Finite-size effects and nonadditivity in the van der Waals interaction
被引:6
|
作者:
de Melo e Souza, Reinaldo
论文数: 0引用数: 0
h-index: 0
机构:
Inst Fed Rio de Janeiro, BR-26530060 Rio De Janeiro, Brazil
Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio de Janeiro, BrazilInst Fed Rio de Janeiro, BR-26530060 Rio De Janeiro, Brazil
de Melo e Souza, Reinaldo
[1
,2
]
Kort-Kamp, W. J. M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio de Janeiro, BrazilInst Fed Rio de Janeiro, BR-26530060 Rio De Janeiro, Brazil
Kort-Kamp, W. J. M.
[2
]
Sigaud, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio de Janeiro, BrazilInst Fed Rio de Janeiro, BR-26530060 Rio De Janeiro, Brazil
Sigaud, C.
[2
]
Farina, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio de Janeiro, BrazilInst Fed Rio de Janeiro, BR-26530060 Rio De Janeiro, Brazil
Farina, C.
[2
]
机构:
[1] Inst Fed Rio de Janeiro, BR-26530060 Rio De Janeiro, Brazil
[2] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio de Janeiro, Brazil
We obtain analytically the exact nonretarded dispersive interaction energy between an atom and a perfectly conducting disk. We consider the atom in the symmetry axis of the disk and assume that the atom is predominantly polarizable in the direction of this axis. For this situation we discuss the finite-size effects on the corresponding interaction energy. We follow the recent procedure introduced by Eberlein and Zietal together with the old and powerful Sommerfeld's image method for nontrivial geometries. For the sake of clarity we present a detailed discussion of Sommerfeld's image method. Comparing our results for the atom-disk system with those recently obtained for an atom near a conducting plane with a circular aperture, we discuss the nonadditivity of the van der Waals interactions involving an atom and two complementary surfaces. We show that there is a given ratio z/a between the distance z from the atom to the center of the disk (aperture) and the radius of the disk a (aperture) for which nonadditivity effects vanish. Qualitative arguments suggest that this quite unexpected result will occur not only for a circular hole, but for any other symmetric hole.