ENLARGING THE BALL OF CONVERGENCE OF SECANT-LIKE METHODS FOR NON-DIFFERENTIABLE OPERATORS

被引:0
|
作者
Argyros, Toannis K. [1 ]
Ren, Hongmin [2 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[2] Hangzhou Polytech, Coll Informat & Engn, Hangzhou 311402, Zhejiang, Peoples R China
关键词
non-differentiable operator equation; the secant-like method; the ball of convergence; the omega-condition and centered-like omega-condition; affine invariant form; LOCAL CONVERGENCE;
D O I
10.4134/JKMS.j160629
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we enlarge the ball of convergence of a uniparametric family of secant-like methods for solving non-differentiable operators equations in Banach spaces via using omega-condition and centered-like w-condition meantime as well as some fine techniques such as the affine invariant form. Numerical examples are also provided.
引用
收藏
页码:17 / 28
页数:12
相关论文
共 50 条
  • [31] Influence of symmetric first-order divided differences on Secant-like methods
    Hernandez-Veron, M. A.
    Hueso, JOSe . L.
    Martinez, Eulalia
    CARPATHIAN JOURNAL OF MATHEMATICS, 2024, 40 (01) : 47 - 64
  • [32] BIFURCATION IN BANACH-SPACES FOR OPERATORS, NON-DIFFERENTIABLE AT ORIGIN
    BEIRAODAVEIGA, MH
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (06): : 329 - 331
  • [33] Generalized g-Fractional Calculus of Canavati-Type and Secant-Like Methods
    Anastassiou G.A.
    Argyros I.K.
    International Journal of Applied and Computational Mathematics, 2017, 3 (3) : 1605 - 1617
  • [34] On convergence of extended state observers for nonlinear systems with non-differentiable uncertainties
    Wu, Xiang
    Lu, Qun
    She, Jinhua
    Sun, Mingxuan
    Yu, Li
    Su, Chun-Yi
    ISA TRANSACTIONS, 2023, 136 : 590 - 604
  • [35] Consensus with convergence rate in directed networks with multiple non-differentiable input delays
    Savino, Heitor J.
    Souza, Fernando O.
    Pimenta, Luciano C. A.
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL (ISIC), 2014, : 252 - 257
  • [36] CONVERGENCE PROPERTIES OF AN ALGORITHM FOR SOLVING NON-DIFFERENTIABLE OPTIMAL-CONTROL PROBLEMS
    STACHURSKI, A
    SAKAWA, Y
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1989, 10 (7-8) : 765 - 786
  • [37] Non-parametric Smoothing for Gradient Methods in Non-differentiable Optimization Problems
    Chakraborty, Arindam
    Roy, Arunjyoti Sinha
    Dasgupta, Bhaskar
    2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 3759 - 3764
  • [38] The Ball-Box Theorem for a Class of Corank 1 Non-differentiable Tangent Subbundles
    Sina Türeli
    Journal of Dynamical and Control Systems, 2018, 24 : 681 - 699
  • [39] The Ball-Box Theorem for a Class of Corank 1 Non-differentiable Tangent Subbundles
    Tureli, Sina
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2018, 24 (04) : 681 - 699
  • [40] NUMERICAL-METHODS FOR REACTION-DIFFUSION PROBLEMS WITH NON-DIFFERENTIABLE KINETICS
    AZIZ, AK
    STEPHENS, AB
    SURI, M
    NUMERISCHE MATHEMATIK, 1988, 53 (1-2) : 1 - 11