Cycle-dependent Microstructural Changes of Silicon-Carbon Composite Anodes for Lithium-Ion Batteries

被引:5
|
作者
Sohn, Myungbeom [1 ]
Lee, Dong Geun [1 ]
Chung, Dong Jae [1 ]
Kim, Ayoung [1 ]
Kim, Hansu [1 ]
机构
[1] Hanyang Univ, Dept Energy Engn, Seoul 04763, South Korea
来源
关键词
Lithium-ion battery; Si-based anode; Si-C composite; Graphite-blended electrode; Solid electrolyte interphase accumulation; ELECTROCHEMICAL PERFORMANCE; NEGATIVE ELECTRODES; NANOCOMPOSITE; DEGRADATION; MECHANISMS; LITHIATION; STABILITY; EVOLUTION; POROSITY; FAILURE;
D O I
10.1002/bkcs.11660
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Si-based high capacity anodes are of the utmost importance for advancing energy density of lithium-ion batteries. The major shortcoming of Si-based anodes, however, is their poor cycle performance. To solve this problem, it is essential to understand the failure mechanisms of both the Si-based anodes. In this work, we observe the cycle-dependent microstructural evolution of a Si-C composite/graphite-blended electrode using ex situ scanning electron microscopy observations and corresponding cross-sectional elemental mapping images. We reveal that the Si particles become finer and spread through the whole electrode and act as an electrochemically active site for electrolyte decomposition reactions. This forms a solid electrolyte interphase layer on the surface of the Si particles during cycling. The resulting electrolyte decomposition products surrounding the Si particles are finely spread throughout the whole blended electrode. This cycle-dependent microstructural change is one of the main reasons for the poor capacity retention of the blended electrode.
引用
收藏
页码:150 / 156
页数:7
相关论文
共 50 条
  • [21] Silicon and carbon based composite anodes for lithium ion batteries
    Datta, Moni Kanchan
    Kumta, Prashant N.
    JOURNAL OF POWER SOURCES, 2006, 158 (01) : 557 - 563
  • [22] Hybrid silicon-carbon nanostructured composites as superior anodes for lithium ion batteries
    Po-Chiang Chen
    Jing Xu
    Haitian Chen
    Chongwu Zhou
    Nano Research, 2011, 4 : 290 - 296
  • [23] Solutions for the problems of silicon-carbon anode materials for lithium-ion batteries
    Liu, Xuyan
    Zhu, Xinjie
    Pan, Deng
    ROYAL SOCIETY OPEN SCIENCE, 2018, 5 (06):
  • [24] Microstructured silicon anodes for lithium-ion batteries
    G. V. Li
    E. V. Astrova
    A. M. Rumyantsev
    V. B. Voronkov
    A. V. Parfen’eva
    V. A. Tolmachev
    T. L. Kulova
    A. M. Skundin
    Russian Journal of Electrochemistry, 2015, 51 : 899 - 907
  • [25] Microstructured silicon anodes for lithium-ion batteries
    Li, G. V.
    Astrova, E. V.
    Rumyantsev, A. M.
    Voronkov, V. B.
    Parfen'eva, A. V.
    Tolmachev, V. A.
    Kulova, T. L.
    Skundin, A. M.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2015, 51 (10) : 899 - 907
  • [26] Porous silicon/carbon composites as anodes for highperformance lithium-ion batteries
    Tian, Zhen-Yu
    Wang, Ya-fei
    Qin, Xin
    Shaislamov, Ulugbek
    Hojamberdiev, Mirabbos
    Zheng, Tong-hui
    Dong, Shuo
    Zhang, Xing-hao
    Kong, De-bin
    Zhi, Lin-jie
    NEW CARBON MATERIALS, 2024, 39 (05) : 992 - 1002
  • [27] Stable silicon/carbon anodes for lithium-ion batteries prepared by emulsiontemplating
    Zhang, Yuzi
    Lucht, Brett
    Bose, Arijit
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [28] Cycling-Induced Microstructural Changes in Alloy Anodes for Lithium-Ion Batteries
    Adams, Jacob N.
    Nelson, George J.
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2021, 18 (04)
  • [29] Investigation of porous silicon/carbon composite as anodes for lithium ion batteries
    Huang, Yan-Hua
    Han, Xiang
    Chen, Hui-Xin
    Chen, Song-Yan
    Yang, Yong
    Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2015, 30 (04): : 351 - 356
  • [30] Investigation of Porous Silicon/Carbon Composite as Anodes for Lithium Ion Batteries
    Huang Yan-Hua
    Han Xiang
    Chen Hui-Xin
    Chen Song-Yan
    Yang Yong
    JOURNAL OF INORGANIC MATERIALS, 2015, 30 (04) : 351 - 356