Null line preserving bijections of Schwarzschild spacetime

被引:1
|
作者
Huang, WL [1 ]
机构
[1] Univ Hamburg, Math Seminar, D-20146 Hamburg, Germany
关键词
Null Line;
D O I
10.1007/s002200050564
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let n is an element of N, n greater than or equal to 3. A bijection of n-dimensional (exterior) Schwarzschild spacetime is an isometry, if, and only if, images and pre-images of null lines are null lines.
引用
收藏
页码:471 / 491
页数:21
相关论文
共 50 条
  • [31] VACUUM POLARIZATION IN SCHWARZSCHILD SPACETIME
    CANDELAS, P
    PHYSICAL REVIEW D, 1980, 21 (08): : 2185 - 2202
  • [32] The gravitational field of the Schwarzschild spacetime
    Borgiel, Wlodzimierz
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 : S207 - S210
  • [33] Rindler horizons in a Schwarzschild spacetime
    Paithankar, Kajol
    Kolekar, Sanved
    PHYSICAL REVIEW D, 2019, 100 (08)
  • [34] Linear bijections preserving the Holder seminorm
    Jimenez-Vargas, A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (08) : 2539 - 2547
  • [35] On the mass neutrino phase along the geodesic line and the null line in curved and flat spacetime
    Zhang, CM
    Beesham, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2003, 12 (04): : 727 - 738
  • [36] Null distance on a spacetime
    Sormani, Christina
    Vega, Carlos
    CLASSICAL AND QUANTUM GRAVITY, 2016, 33 (08)
  • [37] Resonance interatomic energy in a Schwarzschild spacetime
    Zhou, Wenting
    Yu, Hongwei
    PHYSICAL REVIEW D, 2017, 96 (04)
  • [38] A statistical mechanical problem in Schwarzschild spacetime
    Collas, Peter
    Klein, David
    GENERAL RELATIVITY AND GRAVITATION, 2007, 39 (06) : 737 - 755
  • [39] Bijections preserving invertibility of differences of matrices on Hn
    Damjan Kobal
    Acta Mathematica Sinica, English Series, 2008, 24
  • [40] Automatic continuity of orthogonality or disjointness preserving bijections
    Oikhberg, Timur
    Peralta, Antonio M.
    Puglisi, Daniele
    REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (01): : 57 - 88