Holey-plate plasma source using a partial-coaxial microwave cavity

被引:7
|
作者
Yoshida, Y [1 ]
机构
[1] Yamanashi Univ, Dept Mech Syst Engn, Yamanashi 4008511, Japan
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 1999年 / 70卷 / 03期
关键词
D O I
10.1063/1.1149655
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
High-density microwave plasma created and sustained by evanescent waves emitted from a holey plate has been studied. This source is called a holey-plate plasma source. Microwave power at 2.45 GHz is supplied from a coaxial cavity and then converted into an evanescent mode through the use of a holey plate. The plate is made from a 0.5 mm thick, 54 mm diam stainless steel sheet with 2.5 mm diam, 3.6 mm pitch holes, thus allowing high-density plasma to be generated near the surface of the plate. An evanescent electric field is produced from the cavity resonator to a plasma production chamber that is 54 mm in diameter. A detailed description of the plasma source and the plasma characteristics are presented in this article. The plasma density is 6.5 x 10(11) cm(-3) with an electron temperature of 3 eV at an argon gas pressure of 2 Pa. (C) 1999 American Institute of Physics. [S0034-6748(99)04103-9].
引用
收藏
页码:1710 / 1712
页数:3
相关论文
共 50 条
  • [21] Microwave-Induced Thermoacoustic Imaging Using Compressive Sensing and a Holey Cavity
    Liu, Chang
    Dagheyan, Ashkan Ghanbarzadeh
    Heredia-Juesas, Juan
    Molaei, Ali
    Martinez-Lorenzo, Jose A.
    2018 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2018, : 1799 - 1800
  • [22] SOME PROPERTIES OF THE TUNABLE CAVITY MICROWAVE PLASMA SOURCE
    LEBEDEV, YA
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 1995, 4 (03): : 474 - 481
  • [23] Dual-Frequency Microwave Plasma Source Based on Microwave Coaxial Transmission Line
    Chen, Chi
    Fu, Wenjie
    Zhang, Chaoyang
    Lu, Dun
    Han, Meng
    Yan, Yang
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [24] Rotating discharges in a coaxial microwave plasma source under atmospheric pressure
    Liu, Zhuang
    Zhang, Wencong
    Yu, Jie
    Wu, Li
    Huang, Kama
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (11)
  • [25] A Coaxial Atmospheric Microwave Plasma Source With Low-Generating Power
    Wu, Huan
    Xiao, Wei
    Wu, Shaokun
    Li, Xin
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2023, 51 (12) : 3476 - 3483
  • [26] Microwave ion source using resonant cavity
    Tahara, Hirokazu
    Yasui, Toshiaki
    Onoe, Ken-ichi
    Tsubakishita, Yasuji
    Yoshikawa, Takao
    Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 1993, 32 (3 A): : 1298 - 1302
  • [27] Comparative testing of a novel microwave ignition source, the quarter wave coaxial cavity igniter
    Stevens, C. A.
    Pertl, F. A.
    Hoke, J. L.
    Schauer, F. R.
    Smith, J. E.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2011, 225 (D12) : 1633 - 1640
  • [28] Electrodynamic characterization of a cavity-type microwave plasma source
    Miotk, Robert
    Jasinski, Mariusz
    Mizeraczyk, Jerzy
    2017 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION FOR RF, MICROWAVE, AND TERAHERTZ APPLICATIONS (NEMO), 2017, : 176 - 178
  • [29] Numerical Design of the Cavity for the Uniform Atmospheric Microwave Plasma Source
    Lee, S. W.
    Kang, H. J.
    Kim, H. S.
    Uhm, H. S.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 54 (06) : 2297 - 2301
  • [30] Formation of a Plasma Ring by a Microwave Discharge in a Narrow Coaxial Cavity beyond the ECR Region
    Balmashnov, A. A.
    Kalashnikov, A. V.
    Umnov, A. M.
    PLASMA PHYSICS REPORTS, 2018, 44 (06) : 594 - 599