Unbiased learning for hierarchical models

被引:0
|
作者
Sekino, Masashi [1 ]
Nitta, Katsumi [1 ]
机构
[1] Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Dept Computat Intelligence & Syst Sci, Tokyo, Japan
关键词
D O I
10.1109/IJCNN.2007.4371020
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is known that overfitting occurs when a conventional statistical learning method such as maximum likelihood estimation, maximum a posteriori estimation or Bayesian estimation is applied to hierarchical models. This paper gives an explanation why overfitting occurs and propose an appropriate learning framework Unbiased Learning for hierarchical models. The method suggest to train the hyperparameters based on unbiased likelihood which is estimated by an appropriate information criterion. Therefore, it can say that the Unbiased Learning is a generalization of hyperparameters selection. Unbiased Learning with several information criteria is tested by computer simulations.
引用
收藏
页码:575 / 580
页数:6
相关论文
共 50 条
  • [41] A Deep Learning Method for Comparing Bayesian Hierarchical Models
    Elsemueller, Lasse
    Schnuerch, Martin
    Buerkner, Paul-Christian
    Radev, Stefan T.
    PSYCHOLOGICAL METHODS, 2024,
  • [42] Hierarchical models as marginals of hierarchical models
    Montufar, Guido
    Rauh, Johannes
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 88 : 531 - 546
  • [43] On Unbiased Estimation for Discretized Models
    Heng, Jeremy
    Jasra, Ajay
    Law, Kody J. H.
    Tarakanov, Alexander
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2023, 11 (02): : 616 - 645
  • [44] Unbiased LambdaMART: An Unbiased Pairwise Learning-to-Rank Algorithm
    Hu, Ziniu
    Wang, Yang
    Peng, Qu
    Li, Hang
    WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, : 2830 - 2836
  • [45] Empirical Bayes Estimation of Semi-parametric Hierarchical Mixture Models for Unbiased Characterization of Polygenic Disease Architectures
    Nishino, Jo
    Kochi, Yuta
    Shigemizu, Daichi
    Kato, Mamoru
    Ikari, Katsunori
    Ochi, Hidenori
    Noma, Hisashi
    Matsui, Kota
    Morizono, Takashi
    Boroevich, Keith A.
    Tsunoda, Tatsuhiko
    Matsui, Shigeyuki
    FRONTIERS IN GENETICS, 2018, 9
  • [46] Unbiased Likelihood Backpropagation Learning
    Sekino, Masashi
    Nitta, Katsumi
    NEURAL INFORMATION PROCESSING, PART I, 2008, 4984 : 446 - 455
  • [47] Unbiased assessment of learning algorithms
    Scheffer, T
    Herbrich, R
    IJCAI-97 - PROCEEDINGS OF THE FIFTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 AND 2, 1997, : 798 - 803
  • [48] Learning EKG Diagnostic Models with Hierarchical Class Label Dependencies
    Wang, Junheng
    Hauskrecht, Milos
    ARTIFICIAL INTELLIGENCE IN MEDICINE, AIME 2023, 2023, 13897 : 260 - 270
  • [49] Hierarchical hidden Markov models for user/process profile learning
    Galassi, Ugo
    Botta, Marco
    Giordana, Attilio
    FUNDAMENTA INFORMATICAE, 2007, 78 (04) : 487 - 505
  • [50] Learning decomposed hierarchical feature for better transferability of deep models
    Yang, Jianfei
    Qian, Hanjie
    Zou, Han
    Xie, Lihua
    INFORMATION SCIENCES, 2021, 580 : 383 - 397