Mars Exploration Rover Navigation Camera in-flight calibration

被引:15
|
作者
Soderblom, Jason M. [1 ]
Bell, James F., III [1 ]
Johnson, Jeffrey R. [2 ]
Joseph, Jonathan [1 ]
Wolff, Michael J. [3 ]
机构
[1] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA
[2] US Geol Survey, Astrogeol Team, Flagstaff, AZ 86001 USA
[3] Space Sci Inst, Boulder, CO 80301 USA
关键词
D O I
10.1029/2007JE003003
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The Navigation Camera (Navcam) instruments on the Mars Exploration Rover (MER) spacecraft provide support for both tactical operations as well as scientific observations where color information is not necessary: large-scale morphology, atmospheric monitoring including cloud observations and dust devil movies, and context imaging for both the thermal emission spectrometer and the in situ instruments on the Instrument Deployment Device. The Navcams are a panchromatic stereoscopic imaging system built using identical charge-coupled device (CCD) detectors and nearly identical electronics boards as the other cameras on the MER spacecraft. Previous calibration efforts were primarily focused on providing a detailed geometric calibration in line with the principal function of the Navcams, to provide data for the MER navigation team. This paper provides a detailed description of a new Navcam calibration pipeline developed to provide an absolute radiometric calibration that we estimate to have an absolute accuracy of 10% and a relative precision of 2.5%. Our calibration pipeline includes steps to model and remove the bias offset, the dark current charge that accumulates in both the active and readout regions of the CCD, and the shutter smear. It also corrects pixel-to-pixel responsivity variations using flat-field images, and converts from raw instrument-corrected digital number values per second to units of radiance (W m(-2) nm(-1) sr(-1)), or to radiance factor (I/F). We also describe here the initial results of two applications where radiance-calibrated Navcam data provide unique information for surface photometric and atmospheric aerosol studies.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Radiometric Calibration Targets for the Mastcam-Z Camera on the Mars 2020 Rover Mission
    K. M. Kinch
    M. B. Madsen
    J. F. Bell
    J. N. Maki
    Z. J. Bailey
    A. G. Hayes
    O. B. Jensen
    M. Merusi
    M. H. Bernt
    A. N. Sørensen
    M. Hilverda
    E. Cloutis
    D. Applin
    E. Mateo-Marti
    J. A. Manrique
    G. Lopez-Reyes
    A. Bello-Arufe
    B. L. Ehlmann
    J. Buz
    A. Pommerol
    N. Thomas
    L. Affolter
    K. E. Herkenhoff
    J. R. Johnson
    M. Rice
    P. Corlies
    C. Tate
    M. A. Caplinger
    E. Jensen
    T. Kubacki
    E. Cisneros
    K. Paris
    A. Winhold
    Space Science Reviews, 2020, 216
  • [42] Mars exploration rover engineering cameras
    Eisenman, A
    Liebe, CC
    Maimone, MW
    Schwochert, MA
    Willson, RG
    SENSORS, SYSTEMS AND NEXT-GENERATION SATELLITES V, 2001, 4540 : 288 - 297
  • [43] Mars exploration rover telecommunications subsystem
    Hilland, J
    Alaudin, AM
    Estabrook, P
    MICROWAVE AND OPTICAL TECHNOLOGY 2003, 2003, 5445 : 38 - 43
  • [44] Mars Exploration Rover Engineering Cameras
    Maki, JN
    Bell, JF
    Herkenhoff, KE
    Squyres, SW
    Kiely, A
    Klimesh, M
    Schwochert, M
    Litwin, T
    Willson, R
    Johnson, A
    Maimone, M
    Baumgartner, E
    Collins, A
    Wadsworth, M
    Elliot, ST
    Dingizian, A
    Brown, D
    Hagerott, EC
    Scherr, L
    Deen, R
    Alexander, D
    Lorre, J
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2003, 108 (E12)
  • [45] Mars Exploration Rover Geologic traverse by the Spirit rover in the Plains of Gusev Crater, Mars
    Crumpler, LS
    Squyres, SW
    Arvidson, RE
    Bell, JF
    Blaney, D
    Cabrol, NA
    Christensen, PR
    DesMarais, DJ
    Farmer, JD
    Fergason, R
    Golombek, MP
    Grant, FD
    Grant, JA
    Greeley, R
    Hahn, B
    Herkenhoff, KE
    Hurowitz, JA
    Knudson, AT
    Landis, GA
    Li, R
    Maki, J
    McSween, HY
    Ming, DW
    Moersch, JE
    Payne, MC
    Rice, JW
    Richter, L
    Ruff, SW
    Sims, M
    Thompson, SD
    Tosca, N
    Wang, A
    Whelley, P
    Wright, SP
    Wyatt, MB
    GEOLOGY, 2005, 33 (10) : 809 - 812
  • [46] In-flight performance and calibration of the infrared array camera (IRAC) for the Spitzer Space Telescope
    Hora, JL
    Fazio, GG
    Allen, LE
    Ashby, MLN
    Barmby, P
    Deutsch, LK
    Huang, JS
    Marengo, M
    Megeath, ST
    Melnick, GJ
    Pahre, MA
    Patten, BM
    Smith, HA
    Wang, Z
    Willner, SP
    Hoffmann, WF
    Pipher, JL
    Forrest, WJ
    McMurty, CW
    McCreight, CR
    McKelvey, ME
    McMurray, RE
    Moseley, SH
    Arendt, RG
    Mentzell, JE
    Marx, CT
    Fixsen, DJ
    Tollestrup, EV
    Eisenhardt, PR
    Stern, D
    Gorjian, V
    Bhattacharya, B
    Carey, SJ
    Glaccum, WJ
    Lacy, M
    Lowrance, PJ
    Laine, S
    Nelson, BO
    Reach, WT
    Stauffer, JR
    Surace, JA
    Wilson, G
    Wright, EL
    OPTICAL, INFRARED, AND MILLIMETER SPACE TELESCOPES, PTS 1-3, 2004, 5487 : 77 - 92
  • [47] In-flight polarization calibration methods of directional polarized remote sensing camera DPC
    Gu Xing-Fa
    Chen Xing-Feng
    Cheng Tian-Hai
    Li Zheng-Qiang
    Yu Tao
    Xie Dong-Hai
    Xu Hua
    ACTA PHYSICA SINICA, 2011, 60 (07)
  • [48] High-precision navigation and positioning of celestial exploration rover based on depth camera
    Bai, Chengchao
    Guo, Jifeng
    Zheng, Hongxing
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2019, 91 (07): : 961 - 966
  • [49] In-Flight Absolute Radiometric Calibration of UAV Hyperspectral Camera and Its Validation Analysis
    Gou Zhi-yang
    Yan Lei
    Chen Wei
    Jing Xin
    Yin Zhong-yi
    Duan Yi-ni
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32 (02) : 430 - 434