Ultra-Low Resonant Piezoelectric MEMS Energy Harvester With High Power Density

被引:119
|
作者
Song, Hyun-Cheol [1 ]
Kumar, Prashant [1 ]
Maurya, Deepam [1 ]
Kang, Min-Gyu [1 ]
Reynolds, William T., Jr. [2 ]
Jeong, Dae-Yong [3 ]
Kang, Chong-Yun [4 ,5 ]
Priya, Shashank [1 ]
机构
[1] Virginia Tech, Ctr Energy Harvesting Mat & Syst, Bioinspired Mat & Devices Lab, Blacksburg, VA 24061 USA
[2] Virginia Tech, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA
[3] Inha Univ, Dept Mat Sci Engn, Incheon 22212, South Korea
[4] Korea Inst Sci Technol, Ctr Elect Mat, Seoul 02792, South Korea
[5] Korea Univ, Grad Sch Converging Sci & Technol, KU KIST, Seoul 02841, South Korea
基金
美国国家科学基金会;
关键词
Energy harvesting; low resonance frequency; piezoelectric film; spiral structure; LOW-LEVEL; GENERATOR; SENSOR; FABRICATION; COEFFICIENTS; FILMS;
D O I
10.1109/JMEMS.2017.2728821
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate a microscale vibration energy harvester exhibiting an ultra-low resonance frequency and high power density. A spiral shaped microelectromechanical system (MEMS) energy harvester was designed to harvest ambient vibrations at a low frequency (<200 Hz) and acceleration (<0.25 g). High quality Pb(Zr0.48Ti0.52)O-3 (PZT) film with 1.8 mu m-thickness exhibiting remanent polarization of 36.2 mu C/cm(2) and longitudinal piezoelectric constant of 155 pm/V was synthesized to achieve high efficiency mechanical to electrical conversion. The experimental results demonstrate an ultra-low natural frequency of 48 Hz for MEMS harvester. This is one of the lowest resonance frequency reported for the piezoelectric MEMS energy harvester. Further, the position of the natural frequency was controlled by modulating the number of spiral turns and weight of the proof mass. The vibration mode shape and stress distribution were validated through a finite element analysis. The maximum output power of 23.3 nW was obtained from the five turns spiral MEMS energy harvester excited at 0.25 g acceleration and 68Hz. The normalized area and the volumetric energy density were measured to be 5.04 x 10(-4) mu W/mm(2) . g(2) . Hz and 4.92 x 10(-2) mu W/mm(3) . g(2) . Hz, respectively. [2017-0018]
引用
收藏
页码:1226 / 1234
页数:9
相关论文
共 50 条
  • [41] Ultra-low power MEMS micro-heater device
    M. Mahdi
    Microsystem Technologies, 2021, 27 : 2913 - 2917
  • [42] Ultra-Low Power Digitally Operated Tunable MEMS Accelerometer
    Kumar, Varun
    Jafari, Roozbeh
    Pourkamali, Siavash
    IEEE SENSORS JOURNAL, 2016, 16 (24) : 8715 - 8721
  • [43] Ultra-low power MEMS micro-heater device
    Mahdi, M.
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2021, 27 (08): : 2913 - 2917
  • [44] Scavenging power from ultra-low frequency and large amplitude vibration source through a new non-resonant electromagnetic energy harvester
    Shen, Yecheng
    Lu, Kaiyuan
    ENERGY CONVERSION AND MANAGEMENT, 2020, 222
  • [45] Development and Testing of a MEMS Piezoelectric Energy Harvester
    Knight, Ryan R.
    Mo, Changki
    Clark, William W.
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2009, 2009, 7288
  • [46] Design Optimization of MEMS Piezoelectric Energy Harvester
    Hoffmann, D.
    Bechtold, T.
    Hohlfeld, D.
    2016 17TH INTERNATIONAL CONFERENCE ON THERMAL, MECHANICAL AND MULTI-PHYSICS SIMULATION AND EXPERIMENTS IN MICROELECTRONICS AND MICROSYSTEMS (EUROSIME), 2016,
  • [47] A Review of MEMS Scale Piezoelectric Energy Harvester
    Tian, Wenchao
    Ling, Zongyu
    Yu, Wenbo
    Shi, Jing
    APPLIED SCIENCES-BASEL, 2018, 8 (04):
  • [48] A twisting vibration based energy harvester for ultra-low frequency excitations
    Fan, Kangqi
    Qu, Hengheng
    Cai, Meiling
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2020, 64 (1-4) : 693 - 700
  • [49] Design and Experimental Investigation of an Ultra-Low Frequency, Low-Intensity, and Multidirectional Piezoelectric Energy Harvester with Liquid as the Energy-Capture Medium
    Li, Ning
    Yang, Fan
    Luo, Tao
    Qin, Lifeng
    MICROMACHINES, 2023, 14 (02)
  • [50] A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit
    Yu, Hua
    Zhou, Jielin
    Deng, Licheng
    Wen, Zhiyu
    SENSORS, 2014, 14 (02): : 3323 - 3341