Automated, rapid classification of signals using locally linear embedding

被引:3
|
作者
Nichols, J. M. [1 ]
Bucholtz, F. [1 ]
Nousain, B. [1 ]
机构
[1] USN, Res Lab, Washington, DC 20375 USA
关键词
Local linear embedding; Support vector machine; Automated classification;
D O I
10.1016/j.eswa.2011.04.146
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper demonstrates the utility of the locally linear embedding (LLE) dimensionality reduction technique for automated, rapid classification of signals. Specifically, we focus on classifying RF signals as belonging to one of four different emitters. The classifier is trained on samples from each type, first using LLE to build a low-dimensional data manifold and using a support vector machine (SVM) to divide the manifold into sections corresponding to each signal type. New signals are then rapidly projected directly onto the data manifold where an SVM performs the classification. Published by Elsevier Ltd.
引用
收藏
页码:13472 / 13474
页数:3
相关论文
共 50 条
  • [21] Supervised locally linear embedding with probability-based distance for classification
    Zhao, Lingxiao
    Zhang, Zhenyue
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (06) : 919 - 926
  • [22] Supervised PolSAR Image Classification with Multiple Features and Locally Linear Embedding
    Zhang, Qiang
    Wei, Xinli
    Xiang, Deliang
    Sun, Mengqing
    SENSORS, 2018, 18 (09)
  • [23] Locally Linear Embedding by Linear Programming
    Xu, Zhijie
    Zhang, Jianqin
    Xu, Zhidan
    Chen, Zhigang
    CEIS 2011, 2011, 15
  • [24] Independent subspace analysis using locally linear embedding
    FitzGerald, D
    Coyle, E
    Lawlor, B
    DAFX-03: 6TH INTERNATIONAL CONFERENCE ON DIGITAL AUDIO EFFECTS, PROCEEDINGS, 2003, : 13 - 17
  • [25] Hyperspectral image processing using locally linear embedding
    Kim, DH
    Finkel, LH
    1ST INTERNATIONAL IEEE EMBS CONFERENCE ON NEURAL ENGINEERING 2003, CONFERENCE PROCEEDINGS, 2003, : 316 - 319
  • [26] Robust Locally Linear Embedding using Penalty Functions
    Winlaw, Manda
    Dehkordy, Leila Samimi
    Ghodsi, Ali
    2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 2305 - 2312
  • [27] Manifold learning using growing locally linear embedding
    Yin, Junsong
    Hu, Dewen
    Zhou, Zongtan
    2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, VOLS 1 AND 2, 2007, : 73 - 80
  • [28] Aircraft Pose Recognition Using Locally Linear Embedding
    Yuan, Wenting
    Jia, Peng
    Wang, Luping
    Shao, Lin
    2009 INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION, VOL III, 2009, : 454 - +
  • [29] Scaling Locally Linear Embedding
    Fujiwara, Yasuhiro
    Marumo, Naoki
    Blondel, Mathieu
    Takeuchi, Koh
    Kim, Hideaki
    Iwata, Tomoharu
    Ueda, Naonori
    SIGMOD'17: PROCEEDINGS OF THE 2017 ACM INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2017, : 1479 - 1492
  • [30] Incremental locally linear embedding
    Kouropteva, O
    Okun, O
    Pietikäinen, M
    PATTERN RECOGNITION, 2005, 38 (10) : 1764 - 1767