Antibiotic Resistance Mechanisms of Clinically Important Bacteria

被引:191
|
作者
Giedraitiene, Agne [1 ]
Vitkauskiene, Astra [2 ]
Naginiene, Rima [3 ]
Pavilonis, Alvydas [1 ]
机构
[1] Lithuanian Univ Hlth Sci, Dept Microbiol, Med Acad, Eiveniu 4, LT-50161 Kaunas, Lithuania
[2] Lithuanian Univ Hlth Sci, Dept Lab Med, Med Acad, LT-50161 Kaunas, Lithuania
[3] Lithuanian Univ Hlth Sci, Inst Biomed Res, Med Acad, LT-50161 Kaunas, Lithuania
来源
MEDICINA-LITHUANIA | 2011年 / 47卷 / 03期
关键词
bacteria; antibiotics; resistance mechanisms; SPECTRUM BETA-LACTAMASES; PSEUDOMONAS-AERUGINOSA; ANTIMICROBIAL RESISTANCE; STAPHYLOCOCCUS-AUREUS; KLEBSIELLA-PNEUMONIAE; ENTEROBACTERIACEAE; EMERGENCE; EVOLUTION; INFECTION; SCHEME;
D O I
10.3390/medicina47030019
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Bacterial resistance to antimicrobial drugs is an increasing health and economic problem. Bacteria may be innate resistant or acquire resistance to one or few classes of antimicrobial agents. Acquired resistance arises from: (i) mutations in cell genes (chromosomal mutation) leading to cross-resistance, (ii) gene transfer from one microorganism to other by plasmids (conjugation or transformation), transposons (conjugation), integrons and bacteriophages (transduction). After a bacterium gains resistance genes to protect itself from various antimicrobial agents, bacteria can use several biochemical types of resistance mechanisms: antibiotic inactivation (interference with cell wall synthesis, e.g., beta-lactams and glycopeptide), target modification (inhibition of protein synthesis, e.g., macrolides and tetracyclines; interference with nucleic acid synthesis, e.g., fluoroquinolones and rifampin), altered permeability (changes in outer membrane, e.g., aminoglycosides; new membrane transporters, e.g., chloramphenicol), and "bypass" metabolic pathway (inhibition of metabolic pathway, e.g., trimethoprim-sulfamethoxazole).
引用
收藏
页码:137 / 146
页数:10
相关论文
共 50 条
  • [21] What's new in mechanisms of antibiotic resistance in bacteria of clinical origin?
    Asenjo, Alejandra
    Oteo-Iglesias, Jesus
    Alos, Juan-Ignacio
    ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA, 2021, 39 (06): : 291 - 299
  • [22] INCIDENCE AND MECHANISMS OF RESISTANCE TO TRIMETHOPRIM IN CLINICALLY ISOLATED GRAM-NEGATIVE BACTERIA
    GREY, D
    HAMILTONMILLER, JMT
    BRUMFITT, W
    CHEMOTHERAPY, 1979, 25 (03) : 147 - 156
  • [23] EXTRACHROMOSOMAL DNA IN CLINICALLY IMPORTANT ANAEROBIC BACTERIA
    DELBENE, VE
    BRUNSON, JW
    RUBENS, CE
    CLINICAL RESEARCH, 1977, 25 (01): : A27 - A27
  • [24] Fluorescence Characterization of Clinically-Important Bacteria
    Dartnell, Lewis R.
    Roberts, Tom A.
    Moore, Ginny
    Ward, John M.
    Muller, Jan-Peter
    PLOS ONE, 2013, 8 (09):
  • [25] Antimicrobial resistance in clinically important biofilms
    Fatemeh Rafii
    Mark E Hart
    World Journal of Pharmacology, 2015, (01) : 31 - 46
  • [26] Mechanisms of antibiotic resistance
    Lin, Jun
    Nishino, Kunihiko
    Roberts, Marilyn C.
    Tolmasky, Marcelo
    Aminov, Rustam I.
    Zhang, Lixin
    FRONTIERS IN MICROBIOLOGY, 2015, 6
  • [27] Mechanisms of antibiotic resistance
    Silva, J
    CURRENT THERAPEUTIC RESEARCH-CLINICAL AND EXPERIMENTAL, 1996, 57 : 30 - 35
  • [28] Mechanisms of Antibiotic Resistance
    Munita, Jose M.
    Arias, Cesar A.
    MICROBIOLOGY SPECTRUM, 2016, 4 (02):
  • [29] Mechanisms of antibiotic resistance
    Hoffman, SB
    COMPENDIUM ON CONTINUING EDUCATION FOR THE PRACTICING VETERINARIAN, 2001, 23 (05): : 464 - +
  • [30] Antibiotic resistance mechanisms
    Papagiannitsis, C.
    Loli, A.
    Tzouvelekis, L. S.
    Tzelepi, E.
    Arlet, G.
    Miriagou, V.
    INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2007, 29 : S222 - S222