The Moore-Penrose inverses of matrices over quaternion polynomial rings

被引:8
|
作者
Huang, Liji [2 ]
Wang, Qing-Wen [1 ]
Zhang, Yang [2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai, Peoples R China
[2] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
基金
加拿大自然科学与工程研究理事会; 上海市自然科学基金; 中国国家自然科学基金;
关键词
Quaternion polynomial matrix; Moore-Penrose inverse; Leverrier-Faddeev algorithm; GENERALIZED INVERSE; STABILITY; SYSTEMS;
D O I
10.1016/j.laa.2015.02.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define and discuss the Moore-Penrose inverses of matrices with quaternion polynomial entries. When the Moore-Penrose inverses exist, we prove that Leverrier-Faddeev algorithm works for these matrices by using generalized characteristic polynomials. Furthermore, after studying interpolations for quaternion polynomials, we give an efficient algorithm to compute the Moore-Penrose inverses. We developed a Maple package for quaternion polynomial matrices. All algorithms in this paper are implemented, and tested on examples. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:45 / 61
页数:17
相关论文
共 50 条
  • [41] Do all dual matrices have dual Moore-Penrose generalized inverses ?
    Udwadia, Firdaus E.
    Pennestri, Ettore
    de Falco, Domenico
    MECHANISM AND MACHINE THEORY, 2020, 151
  • [42] A note on stable perturbations of Moore-Penrose inverses
    Li, Zhao
    Xu, Qingxiang
    Wei, Yimin
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (01) : 18 - 26
  • [43] Additive maps preserving Moore-Penrose inverses of matrices on symmetric matrix spaces
    Zhang, X
    LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (05): : 349 - 358
  • [44] MOORE-PENROSE INVERSES OF BLOCK CIRCULANT AND BLOCK K-CIRCULANT MATRICES
    SMITH, RL
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1977, 16 (03) : 237 - 245
  • [45] SYMMETRIC MORPHISMS AND THE EXISTENCE OF MOORE-PENROSE INVERSES
    PUYSTJENS, R
    ROBINSON, DW
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 131 : 51 - 69
  • [46] The bi-weighted Moore-Penrose inverses
    Yuan, Wan-Gui
    Liao, Zu-Hua
    Advances in Matrix Theory and Applications, 2006, : 293 - 296
  • [47] CONTINUITY OF MOORE-PENROSE AND DRAZIN GENERALIZED INVERSES
    CAMPBELL, SL
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1977, 18 (01) : 53 - 57
  • [48] The Moore-Penrose inverses of lower triangular operators
    Li, Yuan
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (03): : 229 - 235
  • [49] Representations for Moore-Penrose inverses in Hilbert spaces
    Wei, YM
    Ding, J
    APPLIED MATHEMATICS LETTERS, 2001, 14 (05) : 599 - 604
  • [50] GENERAL ELEMENT OF GENERALIZED MOORE-PENROSE INVERSES
    GABRIEL, R
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1982, 27 (06): : 689 - 702