On eggs and translation generalised quadrangles

被引:12
|
作者
Lavrauw, M
Penttila, T
机构
[1] Tech Univ Eindhoven, Eindhoven, Netherlands
[2] Univ Western Australia, Dept Math & Stat, Nedlands, WA 6907, Australia
关键词
D O I
10.1006/jcta.2001.3179
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study eggs in PG(4n - 1, q). A new model for eggs is presented in which all known examples are given. We calculate the general form of the dual egg for eggs arising from a semifield flock. Applying this to the egg obtained by L. Bader et al. (1999, J. Combin. Theory Ser. A 86, 49-62) from the Penttila-Williams ovoid, we obtain the dual egg, which is not isomorphic to any of the previous known examples. Furthermore we give a new proof of a conjecture of J. A. Thas (1994, J. Combin. Theory Ser. A 67, 140-160) using our model and classify all eggs of PG(7, 2) which is equivalent to the classification of all translation generalised quadrangles of order (4, 16). (C) 2001 Academic Press.
引用
收藏
页码:303 / 315
页数:13
相关论文
共 50 条
  • [41] Generalized quadrangles with an ovoid that is translation with respect to opposite flags
    Offer, A
    Thas, K
    Van Maldeghem, H
    ARCHIV DER MATHEMATIK, 2005, 84 (04) : 375 - 384
  • [42] Point-primitive, line-transitive generalised quadrangles of holomorph type
    Bamberg, John
    Popiel, Tomasz
    Praeger, Cheryl E.
    JOURNAL OF GROUP THEORY, 2017, 20 (02) : 269 - 287
  • [43] FLOCKS OF QUADRATIC CONES, GENERALIZED QUADRANGLES AND TRANSLATION-PLANES
    GEVAERT, H
    JOHNSON, NL
    GEOMETRIAE DEDICATA, 1988, 27 (03) : 301 - 317
  • [44] Infinite cyclic projective skew translation quadrangles do not exist
    Thas, Koen
    MATHEMATISCHE ANNALEN, 2024, 388 (04) : 4307 - 4316
  • [45] Infinite cyclic projective skew translation quadrangles do not exist
    Koen Thas
    Mathematische Annalen, 2024, 388 : 4307 - 4316
  • [46] Compact ovoids in quadrangles II: The classical quadrangles
    Kramer, L
    GEOMETRIAE DEDICATA, 2000, 79 (02) : 179 - 188
  • [47] Compact Ovoids in Quadrangles II: the Classical Quadrangles
    Linus Kramer
    Geometriae Dedicata, 2000, 79 : 179 - 188
  • [48] Quadrangles
    Lehrer-Graiwer, Sarah
    ARTFORUM INTERNATIONAL, 2009, 48 (02): : 249 - 249
  • [49] Low Rank Groups of Lie Type Acting Point- and Line-Primitively on Finite Generalised Quadrangles
    Arumugam, Vishnuram
    Bamberg, John
    Giudici, Michael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2025, 32 (01):
  • [50] Classifying pseudo-ovals, translation generalized quadrangles, and elation Laguerre planes of small order
    Monzillo, Giusy
    Penttila, Tim
    Siciliano, Alessandro
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (08) : 2183 - 2196