INVISCID LIMIT OF LINEARLY DAMPED AND FORCED NONLINEAR SCHRODINGER EQUATIONS

被引:0
|
作者
Gialelis, Nikolaos [1 ]
机构
[1] Natl & Kapodistrian Univ Athens, Dept Math, GR-15784 Athens, Greece
关键词
Nonlinear Schrodinger equation; inviscid limit; linear damping; forcing term; GLOBAL ATTRACTOR; CHAOS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We approximate a solution of the nonlinear Schrodinger Cauchy problem by solutions of the linearly damped and driven nonlinear Schrodinger Cauchy problems in any open subset of R-n and, for the case n = 1, we provide an estimate of the convergence rate. In doing so, we extract a sufficient relation between the external force and the constant of damping.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] SOLITON IN DAMPED NONLINEAR SCHRODINGER EQUATION
    PEREIRA, NR
    PHYSICS OF FLUIDS, 1977, 20 (10) : 1735 - 1743
  • [42] REMARKS ON THE DAMPED NONLINEAR SCHRODINGER EQUATION
    Saanouni, Tarek
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2020, 9 (03): : 721 - 732
  • [43] On the forced nonlinear Schrodinger equation
    Shull, R
    Bu, C
    Wang, HF
    Chu, ML
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 626 - 630
  • [44] Discontinuous Galerkin and Multiscale Variational Schemes for a Coupled Damped Nonlinear System of Schrodinger Equations
    Asadzadeh, M.
    Rostamy, D.
    Zabihi, F.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (06) : 1912 - 1945
  • [45] Global attractor for weakly damped nonlinear Schrodinger equations in L2(R)
    Goubet, O.
    Molinet, L.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) : 317 - 320
  • [46] A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrodinger equations
    Wang, Dongling
    Xiao, Aiguo
    Yang, Wei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 272 : 644 - 655
  • [47] Quasi-periodic solutions for fully nonlinear forced reversible Schrodinger equations
    Feola, Roberto
    Procesi, Michela
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (07) : 3389 - 3447
  • [48] The linearly damped nonlinear Schrodinger equation with localized driving: spatiotemporal decay estimates and the emergence of extreme wave events
    Fotopoulos, G.
    Karachalios, N., I
    Koukouloyannis, V
    Vetas, K.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (01):
  • [49] SEMICLASSICAL SOLUTIONS FOR LINEARLY COUPLED SCHRODINGER EQUATIONS
    Chen, Sitong
    Tang, Xianhua
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [50] ON THE INVISCID LIMIT OF THE NAVIER-STOKES EQUATIONS
    Constantin, Peter
    Kukavica, Igor
    Vicol, Vlad
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (07) : 3075 - 3090