Mapping daily and seasonally evapotranspiration using remote sensing techniques over the Nile delta

被引:36
|
作者
Elnmer, Ayat [1 ,2 ,3 ]
Khadr, Mosaad [3 ]
Kanae, Shinjiro [1 ]
Tawfik, Ahmed [2 ,4 ]
机构
[1] Tokyo Inst Technol, Dept Civil & Environm Engn, Meguro Ku, Tokyo 1528552, Japan
[2] E JUST, Environm Engn Dept, POB 179, Alexandria 21934, Egypt
[3] Tanta Univ, Fac Engn, Irrigat & Hydraul Engn Dept, Tanta 31734, Egypt
[4] Natl Res Ctr, Water Pollut Res Dept, Giza 12622, Egypt
关键词
Actual evapotranspiration; SEBAL; Landsat; 8; Water balance; Nile delta; ENERGY BALANCE ALGORITHMS; SEBAL MODEL; WATER; SOIL; EVAPORATION; IMAGERY;
D O I
10.1016/j.agwat.2018.11.009
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The rapid escalation in water demands for agriculture, domestic, and industry sectors requires skillful management of this limited resource. Globally, the agriculture sector is considered the main user of the water resource. Actual evapotranspiration (ETc) is an important tool in determining the water requirements of different crops. Therefore, precise estimation of the ETc is the major parameter in the water balance of arid and semi-arid agriculture regions such as Egypt. Recently, both Remote Sensing and Geographical Information Systems (GIS) become the main techniques that can be efficiently used for estimating the ETc on regional and global coverage. The main goal of this study was to estimate the daily and seasonally ETc over the Nile delta using remote sensing techniques. These techniques were Surface Energy Balance for Land (SEBAL) algorithm with 24 Landsat 8 images. Additionally, FAO-Penman-Monteith method was used to validate the derived ETc from SEBAL algorithm under the same conditions using several performance criteria to assess the performance of the SEBAL algorithm with Landsat 8 in estimating the ETc over the Nile delta. The results revealed that the SEBAL algorithm with Landsat 8 images appears to provide an acceptable estimation of the spatial and temporal distributions of ETc over the Nile delta with acceptable accuracy with R-2 = 97.83%, RMSE about 0.469 mm/day and 15.9% NRMSE. The derived ETc from SEBAL algorithm was then used to estimate the water balance and the irrigation efficiency of the study area. Results of water balance estimates revealed that most of the seasonal ETc (93%) was originally met by surface water and groundwater supplies; however, the remaining portion (7%) was particularly met by precipitation. Furthermore, the estimated irrigation efficiency was about 48.6% in the central portion of the Nile delta. Overall, the performance of the derived ETc from SEBAL algorithm compared to available ground datasets demonstrates the potential of using the SEBAL algorithm with Landsat 8 images for water use and water balance estimates within the Nile delta.
引用
收藏
页码:682 / 692
页数:11
相关论文
共 50 条
  • [21] Distributed hydrological model for mapping evapotranspiration using remote sensing inputs
    Chen, JM
    Chen, XY
    Ju, WM
    Geng, XY
    JOURNAL OF HYDROLOGY, 2005, 305 (1-4) : 15 - 39
  • [22] Land use changes and its impacts on water resources in Nile Delta region using remote sensing techniques
    Elhag M.
    Psilovikos A.
    Sakellariou-Makrantonaki M.
    Environment, Development and Sustainability, 2013, 15 (5) : 1189 - 1204
  • [23] Estimation of daily evapotranspiration using a two-layer remote sensing model
    Yunhao, C
    Xiaobing, L
    Jing, L
    Peijun, S
    Wen, D
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (08) : 1755 - 1762
  • [24] SOIL MAPPING USING REMOTE-SENSING TECHNIQUES
    KARALE, RL
    BALI, YP
    RAO, KVS
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-ENGINEERING SCIENCES, 1983, 6 (SEP): : 197 - 208
  • [25] Estimation of regional evapotranspiration over Northwest China using remote sensing
    Chen Yun-hao
    Li Xiao-bing
    Shi Pei-jun
    Journal of Geographical Sciences, 2001, 11 (2) : 140 - 148
  • [26] Using remote sensing data to estimate evapotranspiration over the Inhomogeneous Landscape
    Guo Jianmao
    Li, Xujie
    Zhu, Bin
    REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY VII, 2010, 7809
  • [27] Estimation evapotranspiration over the large landscape by using remote sensing data
    Guo Jianmao
    Liu Ronghua
    Guo Qile
    Fei Dunyue
    Wang Qian
    Liu Junwei
    LAND SURFACE REMOTE SENSING II, 2014, 9260
  • [29] Change detection of the coastal zone east of the Nile Delta using remote sensing
    El-Asmar, H. M.
    Hereher, M. E.
    ENVIRONMENTAL EARTH SCIENCES, 2011, 62 (04) : 769 - 777
  • [30] Change detection of the coastal zone east of the Nile Delta using remote sensing
    H. M. El-Asmar
    M. E. Hereher
    Environmental Earth Sciences, 2011, 62 : 769 - 777