Nonadiabatic dynamics in the semiclassical Liouville representation: Locality, transformation theory, and the energy budget

被引:10
|
作者
Martens, Craig C. [1 ]
机构
[1] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
INITIAL-VALUE REPRESENTATION; MOLECULAR-DYNAMICS; SIMULATION; LIMIT;
D O I
10.1016/j.chemphys.2016.06.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we revisit the semiclassical Liouville approach to describing molecular dynamics with electronic transitions using classical trajectories. Key features of the formalism are highlighted. The locality in phase space and presence of nonclassical terms in the generalized Liouville equations are emphasized and discussed in light of trajectory surface hopping methodology. The representation dependence of the coupled semiclassical Liouville equations in the diabatic and adiabatic bases are discussed and new results for the transformation theory of the Wigner functions representing the corresponding density matrix elements given. We show that the diagonal energies of the state populations are not conserved during electronic transitions, as energy is stored in the electronic coherence. We discuss the implications of this observation for the validity of imposing strict energy conservation in trajectory based methods for simulating nonadiabatic processes. (C) 2016 Published by Elsevier B.V.
引用
收藏
页码:60 / 68
页数:9
相关论文
共 33 条
  • [21] NONADIABATIC TRANSITION-STATE THEORY AND MULTIPLE POTENTIAL-ENERGY SURFACE MOLECULAR-DYNAMICS OF INFREQUENT EVENTS
    HAMMES-SCHIFFER, S
    TULLY, JC
    JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (19): : 8528 - 8537
  • [22] Representation of Diabatic Potential Energy Matrices for Multiconfiguration Time-Dependent Hartree Treatments of High-Dimensional Nonadiabatic Photodissociation Dynamics
    Han, Shanyu
    Schroeder, Markus
    Gatti, Fabien
    Meyer, Hans-Dieter
    Lauvergnat, David
    Yarkony, David R.
    Guo, Hua
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (08) : 4627 - 4638
  • [23] Mechanistic description of population dynamics using dynamic energy budget theory incorporated into integral projection models
    Smallegange, Isabel M.
    Caswell, Hal
    Toorians, Marjolein E. M.
    de Roos, Andre M.
    METHODS IN ECOLOGY AND EVOLUTION, 2017, 8 (02): : 146 - 154
  • [24] Predicting Population Dynamics from the Properties of Individuals: A Cross-Level Test of Dynamic Energy Budget Theory
    Martin, Benjamin T.
    Jager, Tjalling
    Nisbet, Roger M.
    Preuss, Thomas G.
    Grimm, Volker
    AMERICAN NATURALIST, 2013, 181 (04): : 506 - 519
  • [26] Free-energy analysis of lysozyme-triNAG binding modes with all-atom molecular dynamics simulation combined with the solution theory in the energy representation
    Takemura, Kazuhiro
    Burri, Raghunadha Reddy
    Ishikawa, Takeshi
    Ishikura, Takakazu
    Sakuraba, Shun
    Matubayasi, Nobuyuki
    Kuwata, Kazuo
    Kitao, Akio
    CHEMICAL PHYSICS LETTERS, 2013, 559 : 94 - 98
  • [27] Dynamics of equilibrium upset and electromagnetic energy transformation in the geomagnetotail: A theory and simulation using particles. 1. evolution of configurations in an MHD approximation
    Domrin, V. I.
    Kropotkin, A. P.
    GEOMAGNETISM AND AERONOMY, 2007, 47 (03) : 299 - 306
  • [28] Dynamics of equilibrium upset and electromagnetic energy transformation in the geomagnetotail: A theory and simulation using particles. 2. numerical simulation using particles
    Domrin, V. I.
    Kropotkin, A. P.
    GEOMAGNETISM AND AERONOMY, 2007, 47 (03) : 307 - 315
  • [29] Dynamics of equilibrium upset and electromagnetic energy transformation in the geomagnetotail: A theory and simulation using particles. 1. Evolution of configurations in an MHD approximation
    V. I. Domrin
    A. P. Kropotkin
    Geomagnetism and Aeronomy, 2007, 47 : 299 - 306
  • [30] Dynamics of equilibrium upset and electromagnetic energy transformation in the geomagnetotail: A theory and simulation using particles. 2. Numerical simulation using particles
    V. I. Domrin
    A. P. Kropotkin
    Geomagnetism and Aeronomy, 2007, 47 : 307 - 315