Preconditioned CG Methods for a Variable-Coefficient Nonlocal Diffusion Model

被引:0
|
作者
Ran, Yu-Hong [1 ]
Yan, Min [1 ]
机构
[1] Northwest Univ, Sch Math, Ctr Nonlinear Studies, Xian 710127, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlocal diffusion model; fast collocation method; Toeplitz matrix; CG method; pre-conditioner; CIRCULANT PRECONDITIONER; ITERATIVE METHODS; APPROXIMATION;
D O I
10.4208/eajam.290921.250122
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A variable-coefficient nonlocal diffusion model is discretized by an improved fast collocation scheme. The resulting linear system has a symmetric positive definite Toeplitz-like coefficient matrix. The preconditioned CG methods with Toeplitz and circulant preconditioners are used for solving the discretized linear system. Numerical experiments demonstrate the effectiveness of the preconditioned CG methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] GLOBAL EXISTENCE AND ASYMPTOTIC PROFILE FOR A DAMPED WAVE EQUATION WITH VARIABLE-COEFFICIENT DIFFUSION
    Li, Yuequn
    Liu, Hui
    Guo, Fei
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 2024 (04)
  • [22] On a variable-coefficient modified KP equation and a generalized variable-coefficient KP equation with computerized symbolic computation
    Gao, YT
    Tian, B
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2001, 12 (06): : 819 - 833
  • [23] SOLUTION TO DIFFUSION EQUATION IN A FINITE SINGLE-PHASE SAMPLE WITH VARIABLE-COEFFICIENT
    CERNY, R
    RAFAJA, D
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 1989, 113 (02): : K181 - K184
  • [24] Nonlocal symmetries and group invariant solutions for the coupled variable-coefficient Newell-Whitehead system
    Xia, Yarong
    Yao, Ruoxia
    Xin, Xiangpeng
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2020, 27 (04) : 581 - 591
  • [25] PRECONDITIONED CG-LIKE METHODS FOR SOLVING NONLINEAR CONVECTION-DIFFUSION EQUATIONS
    JUNCU, G
    ILIUTA, I
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 1995, 5 (03) : 239 - 250
  • [26] Generalized variable-coefficient KP equation
    Gao, YT
    Tian, B
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1998, 37 (08) : 2299 - 2301
  • [27] Pfaffianization of the variable-coefficient KP equation
    Zhang, Yuan-Yuan
    Zheng, Ying
    Zhang, Hong-Qing
    CHAOS SOLITONS & FRACTALS, 2009, 39 (03) : 1000 - 1004
  • [28] Nonlocal symmetries and group invariant solutions for the coupled variable-coefficient Newell-Whitehead system
    Yarong Xia
    Ruoxia Yao
    Xiangpeng Xin
    Journal of Nonlinear Mathematical Physics, 2020, 27 : 581 - 591
  • [29] VODE - A VARIABLE-COEFFICIENT ODE SOLVER
    BROWN, PN
    BYRNE, GD
    HINDMARSH, AC
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (05): : 1038 - 1051
  • [30] Generalized Variable-Coefficient KP Equation
    Yi-Tian Gao
    Bo Tian
    International Journal of Theoretical Physics, 1998, 37 : 2299 - 2301