Preconditioned CG Methods for a Variable-Coefficient Nonlocal Diffusion Model

被引:0
|
作者
Ran, Yu-Hong [1 ]
Yan, Min [1 ]
机构
[1] Northwest Univ, Sch Math, Ctr Nonlinear Studies, Xian 710127, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlocal diffusion model; fast collocation method; Toeplitz matrix; CG method; pre-conditioner; CIRCULANT PRECONDITIONER; ITERATIVE METHODS; APPROXIMATION;
D O I
10.4208/eajam.290921.250122
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A variable-coefficient nonlocal diffusion model is discretized by an improved fast collocation scheme. The resulting linear system has a symmetric positive definite Toeplitz-like coefficient matrix. The preconditioned CG methods with Toeplitz and circulant preconditioners are used for solving the discretized linear system. Numerical experiments demonstrate the effectiveness of the preconditioned CG methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Preconditioned CG Methods for a Variable-Coefficient Nonlocal Diffusion Model
    Ran, Yu-Hong
    Yan, Min
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2022, 12 (02) : 421 - 434
  • [2] A fast collocation method for a variable-coefficient nonlocal diffusion model
    Wang, Che
    Wang, Hong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 330 : 114 - 126
  • [3] Fast collocation method for a two-dimensional variable-coefficient linear nonlocal diffusion model
    Xuhao Zhang
    Aijie Cheng
    Advances in Difference Equations, 2020
  • [4] Fast collocation method for a two-dimensional variable-coefficient linear nonlocal diffusion model
    Zhang, Xuhao
    Cheng, Aijie
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [5] A Fast Preconditioned Algorithm for Nonlocal Diffusion Model
    Ran Y.
    Li C.
    Yin J.
    Tongji Daxue Xuebao/Journal of Tongji University, 2021, 49 (04): : 569 - 576
  • [6] Variable-coefficient balancing-act algorithm extended to a variable-coefficient MKP model for the rotating fluids
    Gao, YT
    Tian, B
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2001, 12 (09): : 1383 - 1389
  • [7] Darboux transformation and exact solutions of the variable-coefficient nonlocal Gerdjikov–Ivanov equation
    Yuru Hu
    Feng Zhang
    Xiangpeng Xin
    Hanze Liu
    Theoretical and Mathematical Physics, 2022, 211 : 460 - 472
  • [8] Approximate solution for a variable-coefficient semilinear heat equation with nonlocal boundary conditions
    Zhou, Shiping
    Cui, Minggen
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (12) : 2248 - 2258
  • [9] The triple Wronskian solutions to the variable-coefficient Manakov model
    Zhang, Yi
    Ma, Kun
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2016, 30 (28-29):
  • [10] Solving variable-coefficient burnup equations by exponential Rosenbrock methods
    Xia, Shaopeng
    Cheng, Maosong
    He, Liaoyuan
    Wu, Chen
    ANNALS OF NUCLEAR ENERGY, 2021, 164