DUFFING-VAN DER POL-TYPE OSCILLATOR SYSTEM AND ITS FIRST INTEGRALS

被引:9
|
作者
Feng, Zhaosheng [1 ]
Gao, Guangyue [1 ]
Cui, Jing [1 ]
机构
[1] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78539 USA
关键词
First integral; Duffing oscillator; van der Pol oscillator; diffeomorphism; Lie symmetry method; Lie point symmetry; prolonged infinitesimal operator; parametric solution; ORDINARY DIFFERENTIAL-EQUATIONS; DE-VRIES EQUATION; HELMHOLTZ OSCILLATOR; INTEGRABILITY; SYMMETRIES;
D O I
10.3934/cpaa.2011.10.1377
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, under certain parametric conditions we are concerned with the first integrals of the Duffing-van der Pol-type oscillator system, which include the van der Pol oscillator and the damped Duffing oscillator etc as particular cases. We apply the Lie symmetry method to find two nontrivial infinitesimal generators and use them to construct canonical variables. Through the inverse transformations we obtain the first integrals of the original oscillator system under the given parametric conditions, and some particular cases such as the damped Duffing equation and the van der Pol oscillator system are discussed accordingly.
引用
收藏
页码:1377 / 1392
页数:16
相关论文
共 50 条
  • [21] RESPONSE OF PARAMETRICALLY EXCITED DUFFING-VAN DER POL OSCILLATOR WITH DELAYED FEEDBACK
    李欣业
    陈予恕
    吴志强
    宋涛
    AppliedMathematicsandMechanics(EnglishEdition), 2006, (12) : 1585 - 1595
  • [22] CONTROLLING OF CHAOS BY WEAK PERIODIC PERTURBATIONS IN DUFFING-VAN DER POL OSCILLATOR
    RAJASEKAR, S
    PRAMANA-JOURNAL OF PHYSICS, 1993, 41 (04): : 295 - 309
  • [23] Stochastic bifurcations in Duffing-van der Pol oscillator with Levy stable noise
    Gu Ren-Cai
    Xu Yong
    Hao Meng-Li
    Yang Zhi-Qiang
    ACTA PHYSICA SINICA, 2011, 60 (06)
  • [24] Response of parametrically excited Duffing-van der Pol oscillator with delayed feedback
    Li Xin-ye
    Chen Yu-shu
    Wu Zhi-qiang
    Song Tao
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2006, 27 (12) : 1585 - 1595
  • [25] Response of parametrically excited Duffing-van der Pol oscillator with delayed feedback
    Xin-ye Li
    Yu-shu Chen
    Zhi-qiang Wu
    Tao Song
    Applied Mathematics and Mechanics, 2006, 27 : 1585 - 1595
  • [26] Stochastic bifurcations in a vibro-impact Duffing-Van der Pol oscillator
    Kumar, Pankaj
    Narayanan, S.
    Gupta, Sayan
    NONLINEAR DYNAMICS, 2016, 85 (01) : 439 - 452
  • [27] Stochastic bifurcations in a bistable Duffing-Van der Pol oscillator with colored noise
    Xu, Yong
    Gu, Rencai
    Zhang, Huiqing
    Xu, Wei
    Duan, Jinqiao
    PHYSICAL REVIEW E, 2011, 83 (05):
  • [28] DYNAMICS OF A DUFFING-VAN DER POL OSCILLATOR WITH TIME DELAYED POSITION FEEDBACK
    Leung, A. Y. T.
    Guo, Z. J.
    Yang, H. X.
    PROCEEDINGS OF THE IJSSD SYMPOSIUM 2012 ON PROGRESS IN STRUCTURAL STABILITY AND DYNAMICS, 2012, : 39 - 45
  • [29] Global Bifurcation Analysis of a Duffing-Van der Pol Oscillator with Parametric Excitation
    Han, Qun
    Xu, Wei
    Yue, Xiaole
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (04):
  • [30] Solutions of the Force-Free Duffing-van der Pol Oscillator Equation
    Khan, Najeeb Alam
    Jamil, Muhammad
    Ali, Syed Anwar
    Khan, Nadeem Alam
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 2011