Performance of multiple docking and refinement methods in the pose prediction D3R prospective Grand Challenge 2016

被引:5
|
作者
Fradera, Xavier [1 ]
Verras, Andreas [2 ]
Hu, Yuan [2 ]
Wang, Deping [3 ]
Wang, Hongwu [2 ]
Fells, James I. [2 ]
Armacost, Kira A. [3 ]
Crespo, Alejandro [2 ]
Sherborne, Brad [2 ]
Wang, Huijun [2 ]
Peng, Zhengwei [2 ]
Gao, Ying-Duo [2 ]
机构
[1] Merck & Co Inc, 33 Ave Louis Pasteur, Boston, MA 02215 USA
[2] Merck & Co Inc, 2000 Galloping Hill Rd, Kenilworth, NJ 07033 USA
[3] Merck & Co Inc, 770 Sumneytown Pike, West Point, PA 19486 USA
关键词
Pose prediction; D3R Grand Challenge 2016; Docking; Molecular dynamics; FXR; PROTEIN-LIGAND DOCKING; MOLECULAR-DYNAMICS; SCORING FUNCTIONS; BINDING ENTROPY; DATA-BANK; VALIDATION; IDENTIFICATION; GENERATION; ALGORITHM; ACCURACY;
D O I
10.1007/s10822-017-0053-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We describe the performance of multiple pose prediction methods for the D3R 2016 Grand Challenge. The pose prediction challenge includes 36 ligands, which represent 4 chemotypes and some miscellaneous structures against the FXR ligand binding domain. In this study we use a mix of fully automated methods as well as human-guided methods with considerations of both the challenge data and publicly available data. The methods include ensemble docking, colony entropy pose prediction, target selection by molecular similarity, molecular dynamics guided pose refinement, and pose selection by visual inspection. We evaluated the success of our predictions by method, chemotype, and relevance of publicly available data. For the overall data set, ensemble docking, visual inspection, and molecular dynamics guided pose prediction performed the best with overall mean RMSDs of 2.4, 2.2, and 2.2 respectively. For several individual challenge molecules, the best performing method is evaluated in light of that particular ligand. We also describe the protein, ligand, and public information data preparations that are typical of our binding mode prediction workflow.
引用
收藏
页码:113 / 127
页数:15
相关论文
共 50 条
  • [41] Coupling enhanced sampling of the apo-receptor with template-based ligand conformers selection: performance in pose prediction in the D3R Grand Challenge 4
    Andrea Basciu
    Panagiotis I. Koukos
    Giuliano Malloci
    Alexandre M. J. J. Bonvin
    Attilio V. Vargiu
    Journal of Computer-Aided Molecular Design, 2020, 34 : 149 - 162
  • [42] D3R Grand Challenge 3: blind prediction of protein-ligand poses and affinity rankings
    Gaieb, Zied
    Parks, Conor D.
    Chiu, Michael
    Yang, Huanwang
    Shao, Chenghua
    Walters, W. Patrick
    Lambert, Millard H.
    Nevins, Neysa
    Bembenek, Scott D.
    Ameriks, Michael K.
    Mirzadegan, Tara
    Burley, Stephen K.
    Amaro, Rommie E.
    Gilson, Michael K.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (01) : 1 - 18
  • [43] MathDL: mathematical deep learning for D3R Grand Challenge 4
    Duc Duy Nguyen
    Gao, Kaifu
    Wang, Menglun
    Wei, Guo-Wei
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2020, 34 (02) : 131 - 147
  • [44] MathDL: mathematical deep learning for D3R Grand Challenge 4
    Duc Duy Nguyen
    Kaifu Gao
    Menglun Wang
    Guo-Wei Wei
    Journal of Computer-Aided Molecular Design, 2020, 34 : 131 - 147
  • [45] D3R Grand Challenge 4: Blind prediction of protein-ligand poses and affinity predictions
    Gaieb, Zied
    Parks, Conor
    Chiu, Michael
    Yang, Huanwang
    Shao, Chenghua
    Walters, Patrick
    Lewis, Richard
    Bembenek, Scott
    Burley, Stephen
    Amaro, Rommie
    Gilson, Michael
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [46] Affinity prediction using deep learning based on SMILES input for D3R grand challenge 4
    Sangrak Lim
    Yong Oh Lee
    Juyong Yoon
    Young Jun Kim
    Journal of Computer-Aided Molecular Design, 2022, 36 : 225 - 235
  • [47] Affinity prediction using deep learning based on SMILES input for D3R grand challenge 4
    Lim, Sangrak
    Lee, Yong Oh
    Yoon, Juyong
    Kim, Young Jun
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2022, 36 (03) : 225 - 235
  • [48] Protein-ligand pose and affinity prediction: Case study on BACE1 cyclic ligand dataset in D3R Grand Challenge 4
    Yang, Chao
    Lu, Jianing
    Yang, Yuwei
    Zhang, Yingkai
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [49] D3R Grand Challenge 4: ligand similarity and MM-GBSA-based pose prediction and affinity ranking for BACE-1 inhibitors
    Sasmal, Sukanya
    El Khoury, Lea
    Mobley, David L.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2020, 34 (02) : 163 - 177
  • [50] Docking rigid macrocycles using Convex-PL, AutoDock Vina, and RDKit in the D3R Grand Challenge 4
    Maria Kadukova
    Vladimir Chupin
    Sergei Grudinin
    Journal of Computer-Aided Molecular Design, 2020, 34 : 191 - 200