Anharmonic Vibrational Frequencies of Water Borane and Associated Molecules

被引:5
|
作者
Westbrook, Brent R. [1 ]
Fortenberry, Ryan C. [1 ]
机构
[1] Univ Mississippi, Dept Chem & Biochem, University, MS 38677 USA
来源
MOLECULES | 2021年 / 26卷 / 23期
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
vibrational spectroscopy; anharmonic frequencies; rotational spectroscopy; quantum chemistry; alternative fuels; coupled cluster theory; hydrogen production; AMMONIA-BORANE; FORCE-FIELD; MICROWAVE-SPECTRUM; HYDROGEN RELEASE; ENERGY; SPECTROSCOPY; SYSTEMS;
D O I
10.3390/molecules26237348
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Water borane (BH3OH2) and borinic acid (BH2OH) have been proposed as intermediates along the pathway of hydrogen generation from simple reactants: water and borane. However, the vibrational spectra for neither water borane nor borinic acid has been investigaged experimentally due to the difficulty of isolating them in the gas phase, making accurate quantum chemical predictions for such properties the most viable means of their determination. This work presents theoretical predictions of the full rotational and fundamental vibrational spectra of these two potentially application-rich molecules using quartic force fields at the CCSD(T)-F12b/cc-pCVTZ-F12 level with additional corrections included for the effects of scalar relativity. This computational scheme is further benchmarked against the available gas-phase experimental data for the related borane and HBO molecules. The differences are found to be within 3 cm-1 for the fundamental vibrational frequencies and as close as 15 MHz in the B0 and C0 principal rotational constants. Both BH2OH and BH3OH2 have multiple vibrational modes with intensities greater than 100 km mol-1, namely nu 2 and nu 4 in BH2OH, and nu 1, nu 3, nu 4, nu 9, and nu 13 in BH3OH2. Finally, BH3OH2 has a large dipole moment of 4.24 D, which should enable it to be observable by rotational spectroscopy, as well.
引用
收藏
页数:16
相关论文
共 50 条