A V-curve criterion for the parameter optimization of the Tikhonov regularization inversion algorithm for particle sizing

被引:8
|
作者
Liu, Wei [1 ]
Sun, Xianming [1 ]
Shen, Jin [1 ]
机构
[1] Shandong Univ Technol, Sch Elect & Elect Engn, Zibo 255099, Peoples R China
来源
OPTICS AND LASER TECHNOLOGY | 2012年 / 44卷 / 01期
基金
美国国家科学基金会;
关键词
Dynamic light scattering; Inversion algorithm; Optimum regularization parameter; LIGHT-SCATTERING DATA; SIZE DISTRIBUTION; POLYDISPERSITY; CUMULANTS; LATEX;
D O I
10.1016/j.optlastec.2011.04.019
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The regularization parameter plays an important role in applying the Tikhonov regularization method to recover the particle size distribution from dynamic light scattering experiments. The so-called V-curve, which is a plot of the product of the residual norm and the norm of the recovered distribution versus all valid regularization parameters, can be used to estimate the result of inversion. Numerical simulation demonstrated that the resultant V-curve can be applied to optimize the regularization parameter. The regularization parameter is optimized corresponding to the minimum value of the V-curve. Simulation and experimental results show that stable distributions can be retrieved using the Tikhonov regularization with optimum parameter for unimodal particle size distributions. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [21] Inversion Model of Nonspherical Aerosol Particle Size Distribution Based on Tikhonov's Regularization With the PSO-GA Algorithm
    Qiao, Ze
    Zhao, Hu
    Ding, F.
    Zhong, B.
    Ma, X. -R.
    Mao, J. -D.
    Rao, Z. -M.
    Zhou, C. -Y.
    Gong, X.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [22] A Multipath Error Reduction Method for BDS Using Tikhonov Regularization with Parameter Optimization
    Li, Xinzhong
    Xiong, Yongliang
    Xu, Shaoguang
    Chen, Weiwei
    Zhao, Ban
    Zhang, Rui
    REMOTE SENSING, 2023, 15 (13)
  • [23] Deconvolution of Neutron Degraded Images: Comparative Study between TSVD, Tikhonov Regularization and Particle Swarm Optimization Algorithm
    Saadi, Slami
    Bettayeb, Maamar
    Guessoum, Abderrezak
    ENGINEERING LETTERS, 2010, 18 (03)
  • [24] Inversion method based on stochastic optimization for particle sizing
    Jaime Sanchez-Escobar, Juan
    Ibeth Barbosa-Santillan, Liliana
    Vargas-Ubera, Javier
    Aguilar-Valdes, Felix
    APPLIED OPTICS, 2016, 55 (22) : 5806 - 5813
  • [25] An improved particle swarm optimization algorithm for AVO elastic parameter inversion problem
    Wu, Qinghua
    Zhu, Zhixin
    Yan, Xuesong
    Gong, Wenyin
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2019, 31 (09):
  • [26] Numerical Comparison Between Tikhonov Regularization and Singular Value Decomposition Methods Using the L Curve Criterion
    J.P. Braga
    Journal of Mathematical Chemistry, 2001, 29 : 151 - 161
  • [27] Numerical comparison between Tikhonov regularization and singular value decomposition methods using the L curve criterion
    Braga, JP
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2001, 29 (02) : 151 - 161
  • [28] Inversion of Rayleigh surface wave dispersion curve by hybrid particle swarm optimization algorithm
    Chen H.
    Li H.
    Li T.
    Ai H.
    Zhang J.
    Dai T.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2023, 58 (03): : 598 - 609
  • [29] Use of non-negative constraint in Tikhonov regularization for particle sizing based on forward light scattering
    Lin, Chengjun
    Shen, Jianqi
    Wang, Tian'en
    JOURNAL OF MODERN OPTICS, 2016, 63 (16) : 1630 - 1637
  • [30] An Iterative Algorithm Based on the Dual Integral Inversion for Particle Sizing
    Niu, He
    Cao, Zhang
    Xie, Heng
    Zhang, Jiawen
    Xu, Lijun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2018, 67 (07) : 1729 - 1737