A V-curve criterion for the parameter optimization of the Tikhonov regularization inversion algorithm for particle sizing

被引:8
|
作者
Liu, Wei [1 ]
Sun, Xianming [1 ]
Shen, Jin [1 ]
机构
[1] Shandong Univ Technol, Sch Elect & Elect Engn, Zibo 255099, Peoples R China
来源
OPTICS AND LASER TECHNOLOGY | 2012年 / 44卷 / 01期
基金
美国国家科学基金会;
关键词
Dynamic light scattering; Inversion algorithm; Optimum regularization parameter; LIGHT-SCATTERING DATA; SIZE DISTRIBUTION; POLYDISPERSITY; CUMULANTS; LATEX;
D O I
10.1016/j.optlastec.2011.04.019
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The regularization parameter plays an important role in applying the Tikhonov regularization method to recover the particle size distribution from dynamic light scattering experiments. The so-called V-curve, which is a plot of the product of the residual norm and the norm of the recovered distribution versus all valid regularization parameters, can be used to estimate the result of inversion. Numerical simulation demonstrated that the resultant V-curve can be applied to optimize the regularization parameter. The regularization parameter is optimized corresponding to the minimum value of the V-curve. Simulation and experimental results show that stable distributions can be retrieved using the Tikhonov regularization with optimum parameter for unimodal particle size distributions. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [1] Optimization of regularization parameter of inversion in particle sizing using light extinction method
    Institute of Particle and Two Phase Flow Measurement Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
    不详
    Guocheng Gongcheng Xuebao, 2006, SUPPL. 2 (364-367):
  • [2] Optimization of regularization parameter of inversion in particle sizing using light extinction method
    Su, Mingxu
    Xu, Feng
    Cai, Xiaoshu
    Ren, Kuanfang
    Shen, Jianqi
    CHINA PARTICUOLOGY, 2007, 5 (04): : 295 - 299
  • [4] Influence of noise to PCS particle sizing with Tikhonov Regularization Inverse Algorithm
    Shen, Jin
    Cheng, Yanting
    Han, Qiuyan
    Liu, Wei
    Song, Jingling
    2008 INTERNATIONAL CONFERENCE ON OPTICAL INSTRUMENTS AND TECHNOLOGY: OPTICAL SYSTEMS AND OPTOELECTRONIC INSTRUMENTS, 2009, 7156
  • [5] The maximum entropy algorithm for the determination of the Tikhonov regularization parameter in quantitative remote sensing inversion
    Zhao, HR
    Xu, WL
    Yang, H
    Li, XW
    Wang, JD
    Cui, HX
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 3875 - 3877
  • [6] A Modified Landweber Algorithm for Inversion of Particle Size Distribution Combined With Tikhonov Regularization Theory
    Kong, Ming
    Cao, Lixia
    Shan, Liang
    Yang, Yao
    IEEE ACCESS, 2018, 6 : 10814 - 10821
  • [7] On the inversion of diffusion NMR data: Tikhonov regularization and optimal choice of the regularization parameter
    Day, Iain J.
    JOURNAL OF MAGNETIC RESONANCE, 2011, 211 (02) : 178 - 185
  • [8] Parameter identification for continuous point emission source based on Tikhonov regularization method coupled with particle swarm optimization algorithm
    Ma, Denglong
    Tan, Wei
    Zhang, Zaoxiao
    Hu, Jun
    JOURNAL OF HAZARDOUS MATERIALS, 2017, 325 : 239 - 250
  • [9] A Genetic Algorithm Approach for Selecting Tikhonov Regularization Parameter
    Wu, Chuansheng
    He, Jinrong
    Zou, Xiufen
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 3980 - +
  • [10] Aeromagnetic Compensation Based on Tikhonov Regularization with Limited L-curve Parameter-choice Algorithm
    Fu Mengyin
    Li Jie
    Wu Tailin
    Liu Tong
    Wang Meiling
    Wang Kai
    Kang Jiapeng
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 1834 - 1838