Kimesurface representation and tensor linear modeling of longitudinal data

被引:1
|
作者
Zhang, Rongqian [1 ,4 ]
Zhang, Yupeng [2 ,4 ]
Liu, Yuyao [1 ,4 ]
Guo, Yunjie [3 ,4 ]
Shen, Yueyang [3 ,4 ]
Deng, Daxuan [3 ,4 ]
Qiu, Yongkai Joshua [2 ,4 ]
Dinov, Ivo D. [4 ,5 ]
机构
[1] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Elect & Comp Engn Div, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Hlth Behav & Biol Sci, Stat Online Computat Resource, 426 N Ingalls Str, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
来源
NEURAL COMPUTING & APPLICATIONS | 2022年 / 34卷 / 08期
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Spacekime analytics; Longitudinal data; AI; Data science; Complex time; Kimesurface;
D O I
10.1007/s00521-021-06789-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many modern techniques for analyzing time-varying longitudinal data rely on parametric models to interrogate the time-courses of univariate or multivariate processes. Typical analytic objectives include utilizing retrospective observations to model current trends, predict prospective trajectories, derive categorical traits, or characterize various relations. Among the many mathematical, statistical, and computational strategies for analyzing longitudinal data, tensor-based linear modeling offers a unique algebraic approach that encodes different characterizations of the observed measurements in terms of state indices. This paper introduces a new method of representing, modeling, and analyzing repeated-measurement longitudinal data using a generalization of event order from the positive reals to the complex plane. Using complex time (kime), we transform classical time-varying signals as 2D manifolds called kimesurfaces. This kime characterization extends the classical protocols for analyzing time-series data and offers unique opportunities to design novel inference, prediction, classification, and regression techniques based on the corresponding kimesurface manifolds. We define complex time and illustrate alternative time-series to kimesurface transformations. Using the Laplace transform and its inverse, we demonstrate the bijective mapping between time-series and kimesurfaces. A proposed general tensor regression based linear model is validated using functional Magnetic Resonance Imaging data. This kimesurface representation method can be used with a wide range of machine learning algorithms, artificial intelligence tools, analytical approaches, and inferential techniques to interrogate multivariate, complex-domain, and complex-range longitudinal processes.
引用
收藏
页码:6377 / 6396
页数:20
相关论文
共 50 条
  • [21] Representation theorem for linear, isotropic tensor functions in even dimensions
    Department of Mathematics, Southern Illinois University, Carbondale, IL 62901-4408, United States
    不详
    J Elast, 2 (157-164):
  • [22] Comparison Between Linear and Tensor Models of EEG Signals Representation
    Goncalves de Magalhaes Junior, Roberto
    Theoto Rocha, Fabio
    Eduardo Thomaz, Carlos
    IEEE LATIN AMERICA TRANSACTIONS, 2021, 19 (01) : 132 - 137
  • [23] REPRESENTATION THEOREM FOR LINEAR,ISOTROPIC TENSOR FUNCTIONS OF A SKEW ARGUMENT
    郭仲衡
    Applied Mathematics and Mechanics(English Edition), 1983, (03) : 311 - 316
  • [24] Distributed representation of syntactic structure by tensor product representation and non-linear compression
    Yeung, HHT
    Tsang, PWM
    PROCEEDING OF THE NINETEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE SIXTEENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2004, : 437 - 442
  • [25] The representation theorem for linear, isotropic tensor functions in even dimensions
    Pericak-Spector, KA
    Sivaloganathan, J
    Spector, SJ
    JOURNAL OF ELASTICITY, 1999, 57 (02) : 157 - 164
  • [26] Robust tensor-on-tensor regression for multidimensional data modeling
    Lee, Hung Yi
    Reisi Gahrooei, Mostafa
    Liu, Hongcheng
    Pacella, Massimo
    IISE TRANSACTIONS, 2024, 56 (01) : 43 - 53
  • [27] Discriminative Nonnegative Tucker Decomposition for Tensor Data Representation
    Jing, Wenjing
    Lu, Linzhang
    Liu, Qilong
    MATHEMATICS, 2022, 10 (24)
  • [28] Modeling nonstationary longitudinal data
    Núñez-Antón, V
    Zimmerman, DL
    BIOMETRICS, 2000, 56 (03) : 699 - 705
  • [29] Modeling longitudinal data.
    Gueorguieva, Ralitza
    BIOMETRICS, 2006, 62 (03) : 944 - 945
  • [30] Mixture Modeling for Longitudinal Data
    Tang, Xiwei
    Qu, Annie
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2016, 25 (04) : 1117 - 1137