Dense Graphs with Small Clique Number

被引:16
|
作者
Goddard, Wayne [1 ,2 ]
Lyle, Jeremy [2 ,3 ]
机构
[1] Clemson Univ, Sch Comp, Clemson, SC 29631 USA
[2] Clemson Univ, Dept Math Sci, Clemson, SC USA
[3] Univ So Mississippi, Dept Math, Hattiesburg, MS 39406 USA
关键词
dense graphs; clique; coloring; homomorphism; minimum degree; TRIANGLE-FREE GRAPHS; LARGE MINIMUM DEGREE; BIPARTITE;
D O I
10.1002/jgt.20505
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the structure of K(r)-free graphs with large minimum degree, and show that such graphs with minimum degree delta>(2r-5)n/(2r-3) are homomorphic to the join K(r-3)vH, where H is a triangle-free graph. In particular this allows us to generalize results from triangle-free graphs and show that K(r)-free graphs with such a minimum degree have chromatic number at most r+1. We also consider the minimum-degree thresh-olds for related properties. (c) 2010 Wiley Periodicals, Inc. J Graph Theory 66: 319-331, 2011
引用
收藏
页码:319 / 331
页数:13
相关论文
共 50 条
  • [31] CHROMATIC NUMBER VERSUS COCHROMATIC NUMBER IN GRAPHS WITH BOUNDED CLIQUE NUMBER
    ERDOS, P
    GIMBEL, J
    STRAIGHT, HJ
    EUROPEAN JOURNAL OF COMBINATORICS, 1990, 11 (03) : 235 - 240
  • [32] Spectral extrema of graphs with bounded clique number and matching number
    Wang, Hongyu
    Hou, Xinmin
    Ma, Yue
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 669 : 125 - 135
  • [33] Clique number and distance spectral radii of graphs
    Zhai, Mingqing
    Yu, Guanglong
    Shu, Jinlong
    ARS COMBINATORIA, 2012, 104 : 385 - 392
  • [34] Relative Clique Number of Planar Signed Graphs
    Das, Sandip
    Ghosh, Prantar
    Mj, Swathyprabhu
    Sen, Sagnik
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2016, 2016, 9602 : 326 - 336
  • [35] Clique-transversal number in cubic graphs
    Shan, Erfang
    Liang, Zuosong
    Cheng, T. C. E.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2008, 10 (02): : 115 - 123
  • [36] On the clique number of noisy random geometric graphs
    Kahle, Matthew
    Tian, Minghao
    Wang, Yusu
    RANDOM STRUCTURES & ALGORITHMS, 2023, 63 (01) : 242 - 279
  • [37] ON THE SPECTRAL MOMENT OF GRAPHS WITH GIVEN CLIQUE NUMBER
    Li, Shuchao
    Hu, Shuna
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (01) : 261 - 282
  • [38] Relative clique number of planar signed graphs
    Das, Sandip
    Ghosh, Prantar
    Prabhu, Swathy
    Sen, Sagnik
    DISCRETE APPLIED MATHEMATICS, 2020, 280 : 86 - 92
  • [39] Clique-transversal number in cubic graphs
    Shan, Erfang
    Zuosong, Liang
    Cheng, T.C.E.
    Discrete Mathematics and Theoretical Computer Science, 2008, 10 (02): : 115 - 124
  • [40] The jump of the clique chromatic number of random graphs
    Lichev, Lyuben
    Mitsche, Dieter
    Warnke, Lutz
    RANDOM STRUCTURES & ALGORITHMS, 2023, 62 (04) : 1016 - 1034