Joint bi-adversarial learning for unsupervised domain adaptation

被引:16
|
作者
Tian, Qing [1 ,2 ]
Zhou, Jiazhong [1 ]
Chu, Yi [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Engn Res Ctr Digital Forens, Minist Educ, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Unsupervised domain adaptation; Adversarial learning; Prior knowledge; Joint distribution discrepancy; Joint bi-adversarial learning;
D O I
10.1016/j.knosys.2022.108903
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An important challenge of unsupervised domain adaptation (UDA) is how to sufficiently utilize the structure and information of the data distribution, so as to exploit the source domain knowledge for a more accurate classification of the unlabeled target domain. Currently, much research work has been devoted to UDA. However, existing works have mostly considered only distribution alignment or learning domain invariant features by adversarial techniques, ignoring feature processing and intra-domain category information. To this end, we design a new cross-domain discrepancy metric, namely joint distribution for maximum mean discrepancy (JD-MMD), and propose a deep unsupervised domain adaptation learning method, namely joint bi-adversarial learning for unsupervised domain adaptation (JBL-UDA). Specifically, JD-MMD measures cross-domain divergence in terms of both discrepancy and relevance by preserving cross-domain joint distribution discrepancy, as well as their class discriminability. Then, with such divergence measure, JBL-UDA models with two learning modalities, one is founded by the bi-adversarial learning from domains and classes implicitly, while the other explicitly addresses domains and classes alignment via the JD-MMD metric. Besides, JBL-UDA explores structural prior knowledge from data classes and domains to generate class-discriminative and domain-invariant representations. Finally, extensive evaluations exhibit state-of-the-art accuracy of the proposed methodology. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Unsupervised domain adaptation with adversarial distribution adaptation network
    Zhou, Qiang
    Zhou, Wen'an
    Wang, Shirui
    Xing, Ying
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (13): : 7709 - 7721
  • [22] Unsupervised domain adaptation with adversarial distribution adaptation network
    Qiang Zhou
    Wen’an Zhou
    Shirui Wang
    Ying Xing
    Neural Computing and Applications, 2021, 33 : 7709 - 7721
  • [23] Bi-adapting kernel learning for unsupervised domain adaptation
    Wang, Zengmao
    Xiao, Pan
    Tu, Weiping
    Du, Bo
    Cheng, Yanxiang
    NEUROCOMPUTING, 2020, 398 (398) : 547 - 554
  • [24] Domain-invariant adversarial learning with conditional distribution alignment for unsupervised domain adaptation
    Wang, Xingmei
    Sun, Boxuan
    Dong, Hongbin
    IET COMPUTER VISION, 2020, 14 (08) : 642 - 649
  • [25] Joint metric and feature representation learning for unsupervised domain adaptation
    Xie, Yue
    Du, Zhekai
    Li, Jingjing
    Jing, Mengmeng
    Chen, Erpeng
    Lu, Ke
    KNOWLEDGE-BASED SYSTEMS, 2020, 192
  • [26] DELEGATED ADVERSARIAL TRAINING FOR UNSUPERVISED DOMAIN ADAPTATION
    Kim, Dongwan
    Lee, Seungmin
    Kim, Namil
    Jeong, Seong-Gyun
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2521 - 2525
  • [27] Meta Adversarial Weight for Unsupervised Domain Adaptation
    Liu, Chang
    Wang, Lichen
    Fu, Yun
    PROCEEDINGS OF THE 2022 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2022, : 10 - 18
  • [28] Hybrid adversarial network for unsupervised domain adaptation
    Zhang, Changchun
    Zhao, Qingjie
    Wang, Yu
    INFORMATION SCIENCES, 2020, 514 : 44 - 55
  • [29] Adversarial Feature Augmentation for Unsupervised Domain Adaptation
    Volpi, Riccardo
    Morerio, Pietro
    Savarese, Silvio
    Murino, Vittorio
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5495 - 5504
  • [30] Multiple adversarial networks for unsupervised domain adaptation
    Zhou, Qiang
    Zhou, Wen'an
    Wang, Shirui
    Xing, Ying
    KNOWLEDGE-BASED SYSTEMS, 2021, 212 (212)