A NOTE ON GROUPS WITH A FINITE NUMBER OF PAIRWISE PERMUTABLE SEMINORMAL SUBGROUPS

被引:0
|
作者
Trofimuk, Alexander [1 ]
机构
[1] Francisk Skorina Gomel State Univ, Dept Math & Programming Technol, Gomel, BELARUS
关键词
finite group; residual; seminormal subgroups; product of subgroups; derived subgroup;
D O I
10.22108/ijgt.2021.119299.1575
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup A of a group G is called seminormal in G, if there exists a subgroup B such that G = AB and AX is a subgroup of G for every subgroup X of B. The group G = G(1)G(2)center dot center dot center dot G(n) with pairwise permutable subgroups G(1),...,G(n) such that G(i) and G(j) are seminormal in G(i)G(j) for any i; j is an element of {1,...,n}, i not equal j, is studied. In particular, we prove that if G(i) is an element of f for all i, then G(f) <= (G '')(n), where F is a saturated formation and u subset of f. Here n and u are the formations of all nilpotent and supersoluble groups respectively, the f-residual G(f) of G is the intersection of all those normal subgroups N of G for which G=N is an element of f.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [31] On weakly s*-permutable subgroups of finite groups
    Lv, Yubo
    Li, Yangming
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2023, 103 (1-2): : 187 - 202
  • [32] On Finite Groups with Permutable Generalized Subnormal Subgroups
    V. F. Velesnitskii
    V. N. Semenchuk
    Ukrainian Mathematical Journal, 2014, 65 : 1720 - 1724
  • [33] Q-Permutable subgroups of finite groups
    Z. Pu
    L. Miao
    Ukrainian Mathematical Journal, 2012, 63 : 1745 - 1755
  • [34] On Finite Groups with Permutable Generalized Subnormal Subgroups
    Velesnitskii, V. F.
    Semenchuk, V. N.
    UKRAINIAN MATHEMATICAL JOURNAL, 2014, 65 (11) : 1720 - 1724
  • [35] Q-Permutable subgroups of finite groups
    Pu, Z.
    Miao, L.
    UKRAINIAN MATHEMATICAL JOURNAL, 2012, 63 (11) : 1745 - 1755
  • [36] Sylow permutable subnormal subgroups of finite groups
    Ballester-Bolinches, A
    Esteban-Romero, R
    JOURNAL OF ALGEBRA, 2002, 251 (02) : 727 - 738
  • [37] On some permutable embeddings of subgroups of finite groups
    Ballester-Bolinches, Adolfo
    Beidleman, James C.
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2017, 28 (02) : 339 - 347
  • [38] Finite Groups with Given Weakly σ-Permutable Subgroups
    C. Cao
    Z. Wu
    W. Guo
    Siberian Mathematical Journal, 2018, 59 : 157 - 165
  • [39] On π-S-permutable subgroups of finite groups
    A. Ballester-Bolinches
    Yangming Li
    Ning Su
    Zhuoqing Xie
    Mediterranean Journal of Mathematics, 2016, 13 : 93 - 99
  • [40] PERMUTABLE SUBGROUPS OF SOME FINITE PERMUTATION GROUPS
    STONEHEWER, SE
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1974, 28 (MAR) : 222 - 236