A NOTE ON GROUPS WITH A FINITE NUMBER OF PAIRWISE PERMUTABLE SEMINORMAL SUBGROUPS

被引:0
|
作者
Trofimuk, Alexander [1 ]
机构
[1] Francisk Skorina Gomel State Univ, Dept Math & Programming Technol, Gomel, BELARUS
关键词
finite group; residual; seminormal subgroups; product of subgroups; derived subgroup;
D O I
10.22108/ijgt.2021.119299.1575
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup A of a group G is called seminormal in G, if there exists a subgroup B such that G = AB and AX is a subgroup of G for every subgroup X of B. The group G = G(1)G(2)center dot center dot center dot G(n) with pairwise permutable subgroups G(1),...,G(n) such that G(i) and G(j) are seminormal in G(i)G(j) for any i; j is an element of {1,...,n}, i not equal j, is studied. In particular, we prove that if G(i) is an element of f for all i, then G(f) <= (G '')(n), where F is a saturated formation and u subset of f. Here n and u are the formations of all nilpotent and supersoluble groups respectively, the f-residual G(f) of G is the intersection of all those normal subgroups N of G for which G=N is an element of f.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [1] ON THE SUPERSOLUBILITY OF A FINITE GROUP FACTORIZED INTO PAIRWISE PERMUTABLE SEMINORMAL SUBGROUPS
    Trofimuk, Alexander
    COLLOQUIUM MATHEMATICUM, 2021, 164 (02) : 175 - 183
  • [2] The Supersolvable Residual of a Finite Group Factorized by Pairwise Permutable Seminormal Subgroups
    A. A. Trofimuk
    Algebra and Logic, 2021, 60 : 207 - 216
  • [3] The Supersolvable Residual of a Finite Group Factorized by Pairwise Permutable Seminormal Subgroups
    Trofimuk, A. A.
    ALGEBRA AND LOGIC, 2021, 60 (03) : 207 - 216
  • [4] Finite groups which are products of pairwise totally permutable subgroups
    Ballester-Bolinches, A
    Pedraza-Aguilera, MC
    Perez-Ramos, MD
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1998, 41 : 567 - 572
  • [5] Groups Factorized by Pairwise Permutable Abelian Subgroups of Finite Rank
    Amberg, Bernhard
    Sysak, Yaroslav P.
    ADVANCES IN GROUP THEORY AND APPLICATIONS, 2016, 2 : 13 - 24
  • [6] ON SEMINORMAL SUBGROUPS OF FINITE GROUPS
    Ballester-Bolinches, A.
    Beidleman, J. C.
    Perez-Calabuig, V.
    Ragland, M. F.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (02) : 419 - 427
  • [7] A note on weakly 3-permutable subgroups of finite groups
    Yu, Haoran
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2018, 93 (3-4): : 361 - 367
  • [8] ON Π-PERMUTABLE SUBGROUPS IN FINITE GROUPS
    Hu, B.
    Huang, J.
    Adarchenko, N. M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2022, 73 (10) : 1643 - 1653
  • [9] Finite groups with seminormal Sylow subgroups
    Wen Bin Guo
    Acta Mathematica Sinica, English Series, 2008, 24 : 1751 - 1757
  • [10] On Π-Permutable Subgroups in Finite Groups
    B. Hu
    J. Huang
    N. M. Adarchenko
    Ukrainian Mathematical Journal, 2022, 73 : 1643 - 1653