Real interpolation of weighted tent spaces

被引:16
|
作者
Cao, Jun [1 ]
Chang, Der-Chen [2 ,3 ]
Fu, Zunwei [4 ]
Yang, Dachun [5 ]
机构
[1] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Zhejiang, Peoples R China
[2] Georgetown Univ, Dept Math & Stat, Washington, DC 20057 USA
[3] Fu Jen Catholic Univ, Dept Math, Taipei 242, Taiwan
[4] Linyi Univ, Dept Math, Linyi 276005, Peoples R China
[5] Beijing Normal Univ, Lab Math & Complex Syst, Sch Math Sci, Minist Educ, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Real interpolation; tent space; Lorentz space; Hardy space; Muckenhoupt weight; decreasing rearrangement; Hardy inequality; HARDY-SPACES; HP SPACES; OPERATORS;
D O I
10.1080/00036811.2015.1091924
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p is an element of(0, infinity) and w is an element of A(infinity)(R-n) be a Muckenhoupt weight. In this article, the authors study the real interpolation of the weighted tent space T-w(p)(R-+(n+1)). For all w is an element of A(infinity)(R-n), theta is an element of(0, 1), 0 < p(0) < p(1) < infinity and q is an element of(0, infinity], the authors show that (T-w(p0) (R-+(n+1)), T-w(p1) (R-+(n+1)))(theta, q) = T-w(p, q) (R-+(n+1)), where 1/p = 1-theta/p(0) + theta/p(1) and T-w(p, q) (R-+(n+1)) denotes the weighted Lorentz-tent space, which is introduced in this article. As an application, the authors prove a real interpolation result on the weighted Hardy spaces Hp w(Rn) for all p is an element of(0, 1] and w is an element of A(infinity)(R-n), which, when w equivalent to 1, seals a gap existing in the original proof of a corresponding result of Fefferman et al.
引用
收藏
页码:2415 / 2443
页数:29
相关论文
共 50 条
  • [41] Real interpolation of spaces of differential forms
    Hiptmair, Ralf
    Li, Jingzhi
    Zou, Jun
    MATHEMATISCHE ZEITSCHRIFT, 2012, 270 (1-2) : 395 - 402
  • [42] Invertibility of operators in spaces of real interpolation
    Asekritova, Irina
    Kruglyak, Natan
    REVISTA MATEMATICA COMPLUTENSE, 2008, 21 (01): : 207 - 217
  • [43] On an extreme class of real interpolation spaces
    Cobos, Fernando
    Fernandez-Cabrera, Luz M.
    Kuehn, Thomas
    Ullrich, Tino
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (07) : 2321 - 2366
  • [44] Wavelets and Real Interpolation of Besov Spaces
    Lou, Zhenzhen
    Yang, Qixiang
    He, Jianxun
    He, Kaili
    MATHEMATICS, 2021, 9 (18)
  • [45] INTERPOLATION OF SOBOLEV SPACES - THE REAL METHOD
    CALDERON, CP
    MILMAN, M
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (06) : 801 - 808
  • [46] Real interpolation of spaces of differential forms
    Ralf Hiptmair
    Jingzhi Li
    Jun Zou
    Mathematische Zeitschrift, 2012, 270 : 395 - 402
  • [47] Classes of weighted tent function spaces and mixed norms with some applications
    El-Sayed Ahmed, A.
    Youssif, M.Y.
    Italian Journal of Pure and Applied Mathematics, 2020, 43 : 402 - 415
  • [48] Classes of weighted tent function spaces and mixed norms with some applications
    Ahmed, A. El-Sayed
    Youssif, M. Y.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (43): : 402 - 415
  • [49] A q-Atomic Decomposition of Weighted Tent Spaces on Spaces of Homogeneous Type and Its Application
    Song, Liang
    Wu, Liangchuan
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (03) : 3029 - 3059
  • [50] A q-Atomic Decomposition of Weighted Tent Spaces on Spaces of Homogeneous Type and Its Application
    Liang Song
    Liangchuan Wu
    The Journal of Geometric Analysis, 2021, 31 : 3029 - 3059