Real interpolation of weighted tent spaces

被引:16
|
作者
Cao, Jun [1 ]
Chang, Der-Chen [2 ,3 ]
Fu, Zunwei [4 ]
Yang, Dachun [5 ]
机构
[1] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Zhejiang, Peoples R China
[2] Georgetown Univ, Dept Math & Stat, Washington, DC 20057 USA
[3] Fu Jen Catholic Univ, Dept Math, Taipei 242, Taiwan
[4] Linyi Univ, Dept Math, Linyi 276005, Peoples R China
[5] Beijing Normal Univ, Lab Math & Complex Syst, Sch Math Sci, Minist Educ, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Real interpolation; tent space; Lorentz space; Hardy space; Muckenhoupt weight; decreasing rearrangement; Hardy inequality; HARDY-SPACES; HP SPACES; OPERATORS;
D O I
10.1080/00036811.2015.1091924
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p is an element of(0, infinity) and w is an element of A(infinity)(R-n) be a Muckenhoupt weight. In this article, the authors study the real interpolation of the weighted tent space T-w(p)(R-+(n+1)). For all w is an element of A(infinity)(R-n), theta is an element of(0, 1), 0 < p(0) < p(1) < infinity and q is an element of(0, infinity], the authors show that (T-w(p0) (R-+(n+1)), T-w(p1) (R-+(n+1)))(theta, q) = T-w(p, q) (R-+(n+1)), where 1/p = 1-theta/p(0) + theta/p(1) and T-w(p, q) (R-+(n+1)) denotes the weighted Lorentz-tent space, which is introduced in this article. As an application, the authors prove a real interpolation result on the weighted Hardy spaces Hp w(Rn) for all p is an element of(0, 1] and w is an element of A(infinity)(R-n), which, when w equivalent to 1, seals a gap existing in the original proof of a corresponding result of Fefferman et al.
引用
收藏
页码:2415 / 2443
页数:29
相关论文
共 50 条