A Rule-Based Fuzzy Inference System for Adaptive Image Contrast Enhancement

被引:12
|
作者
Jafar, Iyad F. [1 ]
Darabkh, Khalid A. [1 ]
Al-Sukkar, Ghazi M. [2 ]
机构
[1] Univ Jordan, Dept Comp Engn, Amman 11942, Jordan
[2] Univ Jordan, Dept Elect Engn, Amman 11942, Jordan
来源
COMPUTER JOURNAL | 2012年 / 55卷 / 09期
关键词
contrast enhancement; fuzzy clustering; fuzzy logic; fuzzy inference; HISTOGRAM EQUALIZATION; TRANSFORMATION; ALGORITHMS; ENTROPY; LOGIC;
D O I
10.1093/comjnl/bxr120
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Adaptive contrast enhancement (ACE) is a popular method for image contrast enhancement. In this method, enhancement is achieved by adding an amplified version of the high-frequency content of the image to its low-frequency content. The rationale behind that is supported by the fact that the human visual system is sensitive to discontinuities in images, which represent the high-frequency content of the image. Thus, emphasizing this content is expected to improve the perceived contrast. In this paper, a fuzzy ACE (FACE)-based enhancement method, FACE, is proposed. In this method, the contrast gain values are computed using a fuzzy inference system (FIS) whose parameters are entirely derived from the image local statistics. To the best of our knowledge, the computation of the ACE gain values using a FIS has never been addressed before. Experimental results have proved the capability of FACE in enhancing the image contrast with less noise amplification and overenhancement artifacts.
引用
收藏
页码:1041 / 1057
页数:17
相关论文
共 50 条
  • [11] Fog forecasting using rule-based fuzzy inference system
    A. K. Mitra
    Sankar Nath
    A. K. Sharma
    Journal of the Indian Society of Remote Sensing, 2008, 36 : 243 - 253
  • [12] Fog forecasting using rule-based fuzzy inference system
    Mitra, A. K.
    Nath, Sankar
    Sharma, A. K.
    PHOTONIRVACHAK-JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2008, 36 (03): : 243 - 253
  • [13] AN ADAPTIVE FUZZY RULE-BASED COLOR IMAGE SEGMENTATION ALGORITHM
    Wu, Songye
    Wu, Yundong
    Chen, Shuili
    Huang, Zhenkun
    QUANTITATIVE LOGIC AND SOFT COMPUTING, 2012, 5 : 394 - 401
  • [14] Rainfall events prediction using rule-based fuzzy inference system
    Asklany, Somia A.
    Elhelow, Khaled
    Youssef, I. K.
    El-Wahab, M. Abd
    ATMOSPHERIC RESEARCH, 2011, 101 (1-2) : 228 - 236
  • [15] Fuzzy rule-based image processing
    Arakawa, K
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 1997, 8 (05) : 457 - 461
  • [16] Fuzzy and rule-based image convolution
    Looney, CG
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2000, 51 (3-4) : 209 - 219
  • [17] Adaptive fuzzy rule-based classification systems
    Nozaki, K
    Ishibuchi, H
    Tanaka, H
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1996, 4 (03) : 238 - 250
  • [18] Rule-based image convolution for edge enhancement
    Da, XL
    Looney, CG
    COMPUTERS AND THEIR APPLICATIONS, 2001, : 15 - 17
  • [19] Rule-Based Recommendation System for Phylogenetic Inference
    Samarasinghe, O. G.
    Jathunarachchi, J. A. C. G.
    Jeewanthi, H. M. D.
    Meedeniya, D. A.
    Rajapaksa, S. P.
    2019 MORATUWA ENGINEERING RESEARCH CONFERENCE (MERCON) / 5TH INTERNATIONAL MULTIDISCIPLINARY ENGINEERING RESEARCH CONFERENCE, 2019, : 704 - 709
  • [20] ADAPTIVE FUZZY INTERPOLATION FOR SPARSE FUZZY RULE-BASED SYSTEMS
    Cheng, Shou-Hsiung
    Chen, Shyi-Ming
    Chen, Chia-Ling
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL. 1, 2015, : 352 - 358