Spectroscopic infrared scanning near-field optical microscopy (IR-SNOM)

被引:25
|
作者
Vobornik, D
Margaritondo, G
Sanghera, JS
Thielen, P
Aggarwal, ID
Ivanov, B
Tolk, NH
Manni, V
Grimaldi, S
Lisi, A
Rieti, S
Piston, DW
Generosi, R
Luce, M
Perfetti, P
Cricenti, A
机构
[1] Ecole Polytech Fed Lausanne, Inst Phys Mat Complexe, CH-1015 Lausanne, Switzerland
[2] USN, Res Lab, Div Opt Sci, Washington, DC 20375 USA
[3] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[4] Inst Neurobiol & Mol Med, I-00133 Rome, Italy
[5] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN 37232 USA
[6] Ist Struttura Mat, I-00133 Rome, Italy
基金
美国国家卫生研究院;
关键词
SNOM; NSOM; infrared spectroscopy; BN; cells; thin film;
D O I
10.1016/j.jallcom.2005.02.057
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Scanning near-field optical microscopy (SNOM or NSOM) is the technique with the highest lateral optical resolution available today, while infrared (IR) spectroscopy has a high chemical specificity. Combining SNOM with a tunable IR source produces a unique tool, IR-SNOM, capable of imaging distributions of chemical species with a 100 rart spatial resolution. We present in this paper boron nitride (BN) thin film images, where IR-SNOM shows the distribution of hexagonal and cubic phases within the sample. Exciting potential applications in biophysics and medical sciences are illustrated with SNOM images of the distribution of different chemical species within cells. We present in this article images with resolutions of the order of lambda/60 with SNOM working with infrared light. With our SNOM setup, we routinely get optical resolutions between 50 and 150 nm, regardless of the wavelength of the light used to illuminate the sample. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:80 / 85
页数:6
相关论文
共 50 条
  • [21] Live endothelial cells imaged by Scanning Near-field Optical Microscopy (SNOM): capabilities and challenges
    Bulat, Katarzyna
    Rygula, Anna
    Szafraniec, Ewelina
    Ozaki, Yukihiro
    Baranska, Malgorzata
    JOURNAL OF BIOPHOTONICS, 2017, 10 (6-7) : 928 - 938
  • [22] NEAR-FIELD SCANNING OPTICAL MICROSCOPY
    MORRISON, GH
    ANALYTICAL CHEMISTRY, 1989, 61 (19) : A1075 - A1075
  • [23] Fluorescence resonance energy transfer (FRET) detected by scanning near-field optical microscopy (SNOM)
    Subramaniam, V
    Kirsch, A
    Jenei, A
    Jovin, TM
    BIOPHYSICAL JOURNAL, 2000, 78 (01) : 136A - 136A
  • [24] Near-field scanning - Optical microscopy
    Shiku, H
    Dunn, RC
    ANALYTICAL CHEMISTRY, 1999, 71 (01) : 23A - 29A
  • [25] SCANNING NEAR-FIELD OPTICAL MICROSCOPY
    HEINZELMANN, H
    POHL, DW
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1994, 59 (02): : 89 - 101
  • [26] Near-field scanning optical microscopy
    Buratto, SK
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 1996, 1 (04): : 485 - 492
  • [27] Near-field scanning optical microscopy
    Dunn, RC
    CHEMICAL REVIEWS, 1999, 99 (10) : 2891 - +
  • [28] Scanning near-field optical microscopy
    Kirstein, S
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 1999, 4 (04) : 256 - 264
  • [29] Scanning near-field optical microscopy
    Fokas, CS
    NACHRICHTEN AUS CHEMIE TECHNIK UND LABORATORIUM, 1999, 47 (06): : 648 - +
  • [30] Cavity-SNOM (scanning near-field optical microscopy) head using a laser diode
    Ito, Kenchi
    Shintani, Toshimichi
    Hosaka, Sumio
    Muranishi, Masaru
    Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers, 1998, 37 (6 B): : 3759 - 3763