ORBITAL COUNTING FOR SOME CONVERGENT GROUPS

被引:0
|
作者
Peigne, Marc [1 ]
Tapie, Samuel [2 ]
Vidotto, Pierre [2 ]
机构
[1] Univ Tours, Univ Orleans, Inst Denis Poisson, UMR 7013,CNRS, F-37200 Tours, France
[2] Lab Jean Leray, 2 Rue Houssiniere,BP92208, F-44322 Nantes 3, France
关键词
Poincare exponent; convergent/divergent groups; orbital function; MANIFOLDS; FINITENESS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present examples of geometrically finite manifolds with pinched negative curvature, whose geodesic flow has infinite non-ergodic Bowen-Margulis measure and whose Poincare series converges at the critical exponent delta(Gamma). We obtain an explicit asymptotic for their orbital growth function. Namely, for any alpha is an element of]1, 2[ and any smooth slowly varying function L : R -> (0, + infinity), we construct N-dimensional Hadamard manifolds (X, g) of negative and pinched curvature, whose group of oriented isometrics possesses convergent geometrically finite subgroups Gamma such that, as R -> +infinity, N-Gamma(R) := #{gamma is an element of Gamma vertical bar d(o, gamma. o) <= R} similar to C-Gamma(o)L(R)/R-alpha e(delta Gamma R), for some Cr(o) > 0 depending on the base point o.
引用
收藏
页码:1307 / 1340
页数:34
相关论文
共 50 条