Heat capacity of the Ni50Mn37(In0.2Sn0.8)13 alloy

被引:11
|
作者
Podgornykh, S. M. [1 ]
Gerasimov, E. G. [1 ]
Mushnikov, N. V. [1 ]
Kanomata, T.
机构
[1] RAS, Ural Div, Inst Met Phys, Ekaterinburg 620990, Russia
关键词
D O I
10.1088/1742-6596/266/1/012004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Heat capacity of the Heusler-type Ni50Mn37(In0.2Sn0.8)(13) alloy has been studied in external magnetic fields up to 3 T. The alloy has the austenite Curie temperature T-CA approximate to 290 K, the martensitic phase transformation temperature T-M approximate to 220-240 K, and the martensite Curie temperature T-CM approximate to 185 K. The martensitic phase transition is accompanied by a considerable change of both magnetization and resistivity of the sample. It was found that upon the first-order martensitic transformation the heat capacity demonstrate hysteresis, both temperature and peak values being different. The maximum value of the heat capacity near T-M on cooling strongly differs from that on heating. In magnetic field the peaks of the heat capacity shift to lower temperatures with the rate Delta T-M/Delta B approximate to 2.5 K/T. The difference in the peak values of Delta C is caused by either overheating or overcooling the sample during the measurement of each point and the release of the latent heat of the martensitic phase transformation. The estimations of magnetocaloric effect (MCE) from the magnetic field effect on the heat capacity and direct measurements clearly demonstrate that the transition is accompained by a negative (MCE) at T-M. The hysteresis observed leads to a decrease of the (MCE) in magnetic refrigeration cycle.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Enhanced Thermoelectric Properties of Sn0.8Pb0.2Te Alloy by Mn Substitution
    Li, J. Q.
    Lu, Z. W.
    Wang, C. Y.
    Li, Y.
    Liu, F. S.
    Ao, W. Q.
    JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (06) : 2879 - 2885
  • [22] Ni50Mn37Sn13(Co/Fe)9合金的显微组织结构
    刘瑞蕊
    周啸
    周海涛
    刘克明
    彭谦之
    彭勇
    钟芳华
    材料导报, 2014, 28 (02) : 9 - 13
  • [23] Effect of Al doping on structural and magnetic properties of Ni50Mn37AlxSb13-x alloy
    Ray, Mayukh K.
    Bagani, K.
    Singh, R. K.
    Majumdar, B.
    Banerjee, S.
    PHYSICA B-CONDENSED MATTER, 2014, 448 : 33 - 37
  • [24] Room temperature inverse magnetocaloric effect in Pd substituted Ni50Mn37Sn13 Heusler alloys
    Saha, Ritwik
    Nigam, A. K.
    PHYSICA B-CONDENSED MATTER, 2014, 448 : 263 - 266
  • [25] Cycle performance of a hydrogen-absorbing La0.8Y0.2Ni4.8Mn0.2 alloy
    Nakamura, H
    Nakamura, Y
    Fujitani, S
    Yonezu, I
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1996, 21 (06) : 457 - 460
  • [26] Effect of quenching rate on the average grain size and martensitic transformation temperature in rapidly solidified polycrystalline Ni50Mn37Sn13 alloy ribbons
    Quintana-Nedelcos, A.
    Sanchez Llamazares, J. L.
    Rios-Jara, D.
    Lara-Rodriguez, A. G.
    Garcia-Fernandez, T.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2013, 210 (10): : 2159 - 2165
  • [27] The Effect of Different Atomic Substitution at Mn Site on Magnetocaloric Effect in Ni50Mn35Co2Sn13 Alloy
    Xing, Chengfen
    Zhang, Hu
    Long, Kewen
    Xiao, Yaning
    Zhang, Hanning
    Qiu, Zhijie
    He, Dai
    Liu, Xingyu
    Zhang, Yingli
    Long, Yi
    CRYSTALS, 2018, 8 (08):
  • [28] Magnetocaloric and critical behavior in the austenitic phase of Gd-doped Ni50Mn37Sn13 Heusler alloys
    Zhang, P.
    Phan, T. L.
    Dan, N. H.
    Thanh, T. D.
    Yu, S. C.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 615 : S335 - S339
  • [29] Heat capacity and magnetothermal properties of La0.8Sm0.2Mn2Si2
    Emre, Baris
    Dincer, Ilker
    Elerman, Yalcin
    SOLID STATE COMMUNICATIONS, 2010, 150 (29-30) : 1279 - 1282
  • [30] Surface Superconductivity in Ni50Mn36Sn14 Heusler Alloy
    Ayşe Duran
    Journal of Superconductivity and Novel Magnetism, 2018, 31 : 4053 - 4062