Efficient Similarity Measurement between Digitally Reconstructed Radiograph and Fluoroscopy for 3D-2D Registration

被引:0
|
作者
Rao, Chaitanya R. H. [1 ]
Anitha, H. [1 ]
Bhat, Shyamasunder N. [2 ]
Bhat, Vidya [1 ]
机构
[1] Manipal Inst Technol, Dept Elect & Commun, Manipal, Karnataka, India
[2] Kasturba Med Coll & Hosp, Dept Orthopaed, Manipal, Karnataka, India
关键词
3D-2D registration; Digitally Reconstructed Radiographs; Compressed Sensing; Sparsity; Similarity measures; IMAGE REGISTRATION; LOCALIZATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This work aims to make use of compressed sensing to exploit the redundant nature hidden in the image and reduce the computational complexity involved in DRR generation. As a result, radiation risk to the patient can be reduced whilst maintaining an acceptable level of accuracy thus resulting in speed-up in DRR generation using the multi-resolution approach compared to the conventional ray casting approach. Also in this research, different gradient based similarity metrics were compared on the basis of accuracy to achieve robustness against image content mismatch.
引用
收藏
页码:611 / 616
页数:6
相关论文
共 50 条
  • [31] 3D-2D Image Registration for Target Localization in Spine Surgery: Comparison of Similarity Metrics Against Robustness to Content Mismatch
    De Silva, T.
    Uneri, A.
    Reaungamornrat, S.
    Ketcha, M.
    Vogt, S.
    Kleinszig, G.
    Lo, S. F.
    Aygun, N.
    Wolinsky, J. P.
    Gokaslan, Z. L.
    Siewerdsen, J. H.
    MEDICAL PHYSICS, 2015, 42 (06) : 3652 - 3653
  • [32] Neural patient-specific 3D-2D registration in laparoscopic liver resection
    Mhiri, Islem
    Pizarro, Daniel
    Bartoli, Adrien
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2025, 20 (01) : 57 - 64
  • [33] Automated Multimodal Computer Aided Detection Based on a 3D-2D Image Registration
    Hopp, T.
    Neupane, B.
    Ruiter, N. V.
    BREAST IMAGING, IWDM 2016, 2016, 9699 : 400 - 407
  • [34] 3D-2D registration in mobile radiographs: algorithm development and preliminary clinical evaluation
    Otake, Yoshito
    Wang, Adam S.
    Uneri, Ali
    Kleinszig, Gerhard
    Vogt, Sebastian
    Aygun, Nafi
    Lo, Sheng-fu L.
    Wolinsky, Jean-Paul
    Gokaslan, Ziya L.
    Siewerdsen, Jeffrey H.
    PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (05): : 2075 - 2090
  • [35] 3D-2D Registration of Cerebral Angiograms Based on Vessel Directions and Intensity Gradients
    Mitrovic, Uros
    Spiclin, Ziga
    Stern, Darko
    Markelj, Primoz
    Likar, Bostjan
    Milosevic, Zoran
    Pernus, Franjo
    MEDICAL IMAGING 2012: IMAGE PROCESSING, 2012, 8314
  • [36] 3D-2D Medical Image Registration Technology and Its Application Development: a Survey
    Xiao, Handan
    PROCEEDINGS OF 2023 4TH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE FOR MEDICINE SCIENCE, ISAIMS 2023, 2023, : 95 - 100
  • [37] Automatic localization of vertebral levels in x-ray fluoroscopy using 3D-2D registration: a tool to reduce wrong-site surgery
    Otake, Y.
    Schafer, S.
    Stayman, J. W.
    Zbijewski, W.
    Kleinszig, G.
    Graumann, R.
    Khanna, A. J.
    Siewerdsen, J. H.
    PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (17): : 5485 - 5508
  • [38] Evaluation of low-dose limits in 3D-2D rigid registration for surgical guidance
    Uneri, A.
    Wang, A. S.
    Otake, Y.
    Kleinszig, G.
    Vogt, S.
    Khanna, A. J.
    Gallia, G. L.
    Gokaslan, Z. L.
    Siewerdsen, J. H.
    PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (18): : 5329 - 5345
  • [39] An efficient similarity metric for 3D medical image registration
    Sengupta D.
    Gupta P.
    Biswas A.
    Multimedia Tools and Applications, 2024, 83 (40) : 87987 - 88017
  • [40] An efficient similarity metric for 3D medical image registration
    Sengupta, Debapriya
    Gupta, Phalguni
    Biswas, Arindam
    Multimedia Tools and Applications, 83 (40): : 87987 - 88017