Generalizations of Hardy Type Inequalities by Taylor's Formula

被引:3
|
作者
Krulic Himmelreich, Kristina [1 ]
机构
[1] Univ Zagreb, Fac Text & Technol, Prilaz Baruna Filipov 28a, Zagreb 10000, Croatia
关键词
Inequalities; Hardy type inequalities; Green function; Taylor interpolating polynomial; Chebyshev functional; convex function; kernel; exponentially convex functions; log-convex functions; means;
D O I
10.1515/ms-2022-0005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use Taylor's formula to prove new Hardy-type inequalities involving convex functions. We give new results that involve the Hardy-Hilbert inequality, Polya-Knopp inequality and bounds for the identity related to the Hardy-type functional. At the end, mean value theorems of Cauchy type are given.
引用
收藏
页码:67 / 84
页数:18
相关论文
共 50 条
  • [21] Analysis of Hardy-type Inequalities Involving Green Functions and Taylor's Polynomial Approximation
    Abbasi, Anjum Mustafa Khan
    Anwar, Matloob
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2025, 18 (01):
  • [22] ON SOME OSTROWSKI TYPE INEQUALITIES VIA MONTGOMERY IDENTITY AND TAYLOR'S FORMULA II
    Aljinovic, A. Aglic
    Pecaric, J.
    Vukelic, A.
    TAMKANG JOURNAL OF MATHEMATICS, 2005, 36 (04): : 279 - 301
  • [23] Some Generalizations of Dynamic Hardy-Knopp-Type Inequalities on Time Scales
    El-Deeb, Ahmed A.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (05)
  • [24] On a new class of dynamic Hardy-type inequalities and some related generalizations
    Saker, S. H.
    Osman, M. M.
    Anderson, Douglas R.
    AEQUATIONES MATHEMATICAE, 2022, 96 (04) : 773 - 793
  • [25] On a new class of dynamic Hardy-type inequalities and some related generalizations
    S. H. Saker
    M. M. Osman
    Douglas R. Anderson
    Aequationes mathematicae, 2022, 96 : 773 - 793
  • [26] Generalizations of Hardy-Type Inequalities by Montgomery Identity and New Green Functions
    Himmelreich, Kristina Krulic
    Pecaric, Josip
    Pokaz, Dora
    Praljak, Marjan
    AXIOMS, 2023, 12 (05)
  • [27] Generalizations of Some Hardy-Littlewood-Polya Type Inequalities and Related Results
    Khalid, Sadia
    Pecaric, Josip
    FILOMAT, 2021, 35 (08) : 2811 - 2826
  • [28] HARMONIC POLYNOMIALS AND GENERALIZATIONS OF OSTROWSKI-GRUSS TYPE INEQUALITY AND TAYLOR FORMULA
    Awan, K. M.
    Pecaric, J.
    Vukelic, A.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (01): : 297 - 319
  • [29] Generalizations of some integral inequalities related to Hardy type integral inequalities via (p,q)-calculus
    Thongjob, Suriyakamol
    Nonlaopon, Kamsing
    Tariboon, Jessada
    Ntouyas, Sortiris K.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01):
  • [30] Generalizations of Hardy Type Inequalities by Abel-Gontscharoff's Interpolating Polynomial (vol 9, 1724, 2021)
    Himmelreich, Kristina Krulic
    Pecaric, Josip
    Pokaz, Dora
    Praljak, Marjan
    MATHEMATICS, 2023, 11 (07)