A variational principle for the axisymmetric stability of rotating relativistic stars

被引:8
|
作者
Prabhu, Kartik [1 ,2 ]
Schiffrin, Joshua S. [3 ]
Wald, Robert M. [1 ,2 ]
机构
[1] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[3] Univ Cambridge, DAMTP, Ctr Math Sci, Wilberforce Rd, Cambridge CB3 0WA, England
基金
美国国家科学基金会;
关键词
fluid stars; general relativity; variational principle; stability; APPROACHING SCHWARZSCHILD LIMIT; GENERAL-RELATIVITY; DYNAMICAL INSTABILITY; MODE;
D O I
10.1088/0264-9381/33/18/185007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is well known that all rotating perfect fluid stars in general relativity are unstable to certain non-axisymmetric perturbations via the Chandrasekhar-Friedman-Schutz (CFS) instability. However, the mechanism of the CFS instability requires, in an essential way, the loss of angular momentum by gravitational radiation and, in many instances, it acts on too long a timescale to be physically/astrophysically relevant. It is therefore of interest to examine the stability of rotating, relativistic stars to axisymmetric perturbations, where the CFS instability does not occur. In this paper, we provide a Rayleigh-Ritz-type variational principle for testing the stability of perfect fluid stars to axisymmetric perturbations, which generalizes to axisymmetric perturbations of rotating stars a variational principle given by Chandrasekhar for spherical perturbations of static, spherical stars. Our variational principle provides a lower bound to the rate of exponential growth in the case of instability. The derivation closely parallels the derivation of a recently obtained variational principle for analyzing the axisymmetric stability of black holes.
引用
收藏
页数:31
相关论文
共 50 条
  • [31] Variational principle for relativistic fluid dynamics
    Kodama, Takeshi
    Elze, Hans-Thomas
    Hama, Yogiro
    Makler, Martin
    Rafelski, Johann
    Acta Physica Hungarica New Series Heavy Ion Physics, 10 (2-3): : 275 - 285
  • [32] Stability of a relativistic rotating electron-positron jet: Non-axisymmetric perturbations
    Lebedev Physical Institute, Leninsky Prospect 53, Moscow B-333, 117924, Russia
    Mon. Not. R. Astron. Soc., 1 (1-26):
  • [33] VARIATIONAL PRINCIPLE IN RELATIVISTIC MAGNETOFLUID DYNAMICS
    MERCHES, I
    JOURNAL OF PLASMA PHYSICS, 1979, 21 (JUN) : 511 - 517
  • [34] VARIATIONAL PRINCIPLE FOR RELATIVISTIC ADIABATIC FLOW
    SCHMID, LA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (11): : 1118 - 1118
  • [35] Stability of a relativistic rotating electron-positron jet: Non-axisymmetric perturbations
    Istomin, YN
    Pariev, VI
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1996, 281 (01) : 1 - 26
  • [36] Variational principle for relativistic fluid dynamics
    Kodama, T
    Elze, HT
    Hama, Y
    Makler, M
    Rafelski, J
    ACTA PHYSICA HUNGARICA NEW SERIES-HEAVY ION PHYSICS, 1999, 10 (2-3): : 275 - 285
  • [37] Variational principle for relativistic fluid dynamics
    Elze, HT
    Hama, Y
    Kodama, T
    Makler, M
    Rafelski, J
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1999, 25 (09) : 1935 - 1957
  • [38] THE STABILITY OF AXISYMMETRIC ROTATING DROPS
    ROSS, J
    BRULOIS, F
    ASTERISQUE, 1984, (118) : 219 - 226
  • [39] General Relativistic Stability and Gravitational Wave Content of Rotating Triaxial Neutron Stars
    Luo, Yufeng
    Tsokaros, Antonios
    Haas, Roland
    Uryu, Koji
    SYMMETRY-BASEL, 2024, 16 (03):
  • [40] VARIATIONAL ANALYSIS OF ROTATING NEUTRON STARS
    ABRAMOWICZ, MA
    WAGONER, RV
    ASTROPHYSICAL JOURNAL, 1976, 204 (03): : 896 - 899