A Conceptual Framework for Estimating Building Embodied Carbon Based on Digital Twin Technology and Life Cycle Assessment

被引:48
|
作者
Chen, Chen [1 ]
Zhao, Zengfeng [1 ]
Xiao, Jianzhuang [1 ]
Tiong, Robert [2 ]
机构
[1] Tongji Univ, Dept Struct Engn, Coll Civil Engn, Shanghai 200092, Peoples R China
[2] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore 639798, Singapore
关键词
embodied carbon; early building design; life cycle assessment (LCA); digital twin; building information modeling (BIM); RESIDENTIAL BUILDINGS; ENERGY ANALYSIS; BIM; CONSTRUCTION; LCA; FOOTPRINT; QUANTIFICATION; INTEGRATION; EMISSIONS; IMPACTS;
D O I
10.3390/su132413875
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Low-carbon building design requests an estimation of total embodied carbon as the environmental performance metric for comparison of different design options in early design stages. Due to a lack of consensus on the system boundaries in building life cycle assessment (LCA), the carbon estimation results obtained by the current methods are often disputable. In this regard, this paper proposes a method for estimating building embodied carbon based on digital twin technology and LCA. The proposed method is advantageous over others by providing (1) a cradle-to-cradle LCA and (2) an automated data communication between LCA and building information modelling (BIM) databases. Because data for the processes in the life cycle are collected via digital twin technology in a standard and consistent way, the obtained results will be considered credible. So far, a conceptual framework is developed based on a comprehensive literature review, which consists of three parts. In the first part, formulas for LCA are given. In the second part, a hybrid approach combining semantic web with a relational database for BIM and radio-frequency identification (RFID) integration is described. In the third part, how to design the LCA database and how to link LCA with BIM are described. The conceptual framework proposed is tested for its reasonableness by a small hypothetical case study.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] Understanding life cycle digital twin technology for sustainability
    Ponniah, Judith
    Pherwani, Geeta
    Plant Engineering, 2023, 77 (06) : 30 - 33
  • [12] Life Cycle Assessment of Embodied Carbon and Strategies for Decarbonization of a High-Rise Residential Building
    Alotaibi, Badr Saad
    Khan, Sahil Ali
    Abuhussain, Mohammed Awad
    Al-Tamimi, Nedhal
    Elnaklah, Rana
    Kamal, Mohammad Arif
    BUILDINGS, 2022, 12 (08)
  • [13] Life-Cycle Assessment of an Office Building: Influence of the Structural Design on the Embodied Carbon Emissions
    Matias de Paula Filho, Jose Humberto
    D'Antimo, Marina
    Charlier, Marion
    Vassart, Olivier
    MODELLING, 2024, 5 (01): : 55 - 70
  • [14] Digital twin conceptual framework for the operation and maintenance phase in the building's lifecycle
    Borkowski, Andrzej Szymon
    ARCHIVES OF CIVIL ENGINEERING, 2024, 70 (03) : 139 - 152
  • [15] Carbon assessment and cost accounting of a shared building based on the life cycle assessment
    Lei, Yi
    Dong, Lili
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2023, 18 : 1015 - 1025
  • [16] A Framework for Product Life Cycle Management Based Digital Twin Implementation in the Aerospace Industry
    Gurdal, Busra Oksuz
    Testik, Ozlem Muge
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2025, 41 (02)
  • [17] Machine learning for embodied carbon life cycle assessment of buildings
    Hamza El Hafdaoui
    Ahmed Khallaayoun
    Ibtissam Bouarfa
    Kamar Ouazzani
    Journal of Umm Al-Qura University for Engineering and Architecture, 2023, 14 (3): : 188 - 200
  • [18] Life cycle analysis of a building-integrated solar thermal collector, based on embodied energy and embodied carbon methodologies
    Lamnatou, Chr.
    Notton, G.
    Chemisana, D.
    Cristofari, C.
    ENERGY AND BUILDINGS, 2014, 84 : 378 - 387
  • [19] The Role of Embodied Carbon Databases in the Accuracy of Life Cycle Assessment (LCA) Calculations for the Embodied Carbon of Buildings
    Mohebbi, Golnaz
    Bahadori-Jahromi, Ali
    Ferri, Marco
    Mylona, Anastasia
    SUSTAINABILITY, 2021, 13 (14)
  • [20] Low-carbon conceptual design based on product life cycle assessment
    He, Bin
    Tang, Wen
    Wang, Jun
    Huang, Shan
    Deng, Zhongqiang
    Wang, Yan
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2015, 81 (5-8): : 863 - 874