Finite- to zero-range relativistic mean-field interactions

被引:13
|
作者
Niksic, T. [1 ]
Vretenar, D. [2 ]
Lalazissis, G. A. [3 ]
Ring, P. [2 ]
机构
[1] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 10000, Croatia
[2] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany
[3] Aristotle Univ Thessaloniki, Dept Theoret Phys, GR-54124 Thessaloniki, Greece
来源
PHYSICAL REVIEW C | 2008年 / 77卷 / 03期
关键词
D O I
10.1103/PhysRevC.77.034302
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We study the relation between the finite-range (meson-exchange) and zero-range (point-coupling) representations of effective nuclear interactions in the relativistic mean-field framework. Starting from the phenomenological interaction DD-ME2 with density-dependent meson-nucleon couplings, we construct a family of point-coupling effective interactions for different values of the strength parameter of the isoscalar-scalar derivative term. In the meson-exchange picture this corresponds to different values of the sigma-meson mass. The parameters of the isoscalar-scalar and isovector-vector channels of the point-coupling interactions are adjusted to nuclear matter and ground-state properties of finite nuclei. By comparing results for infinite and semi-infinite nuclear matter, ground-state masses, charge radii, and collective excitations, we discuss constraints on the parameters of phenomenological point-coupling relativistic effective interaction.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Finite-size effects on the dynamics of the zero-range process
    Gupta, Shamik
    Barma, Mustansir
    Majumdar, Satya N.
    PHYSICAL REVIEW E, 2007, 76 (06):
  • [42] Finite-size effects in dynamics of zero-range processes
    Juntunen, Janne
    Pulkkinen, Otto
    Merikoski, Juha
    PHYSICAL REVIEW E, 2010, 82 (03):
  • [43] Two particles with zero-range interaction in a magnetic field
    Kirscher, Johannes
    Tiburzi, Brian C.
    PHYSICS LETTERS B, 2021, 819
  • [44] THE RELATIVISTIC MEAN-FIELD MODEL AT LARGE DENSITIES
    BROCKMANN, R
    REINHARD, PG
    ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1988, 331 (03): : 367 - 368
  • [45] HYPERNUCLEAR CURRENTS IN A RELATIVISTIC MEAN-FIELD THEORY
    COHEN, J
    FURNSTAHL, RJ
    PHYSICAL REVIEW C, 1987, 35 (06): : 2231 - 2235
  • [46] RELATIVISTIC MEAN-FIELD DESCRIPTION OF LIGHT NUCLEI
    Leja, J.
    Gmuca, S.
    DYNAMICAL ASPECTS OF NUCLEAR FISSION, 2008, : 331 - +
  • [47] Relativistic mean-field study for Zn isotopes
    Jiang, WZ
    Ren, ZZ
    Wang, TT
    Zhao, YL
    Zhu, ZY
    EUROPEAN PHYSICAL JOURNAL A, 2005, 25 (01): : 29 - 39
  • [48] INSTABILITIES IN THE NONLINEAR RELATIVISTIC MEAN-FIELD MODEL
    DOBEREINER, HG
    REINHARD, PG
    PHYSICS LETTERS B, 1989, 227 (3-4) : 305 - 309
  • [49] Neutron star in relativistic mean-field approximation
    Sun, BX
    Jia, HY
    Meng, J
    Zhao, EG
    HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2000, 24 : 69 - 72
  • [50] Relativistic mean-field theory of nuclear structure
    Ring, P
    INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, VOL 59, PT 1 AND 2, 1997, 59 : 681 - 687