Selective targeting of GARP-LTGFβ axis in the tumor microenvironment augments PD-1 blockade via enhancing CD8+ T cell antitumor immunity

被引:18
|
作者
Li, Anqi [1 ,2 ,3 ]
Chang, Yuzhou [2 ,3 ,4 ]
Song, No-Joon [2 ,3 ]
Wu, Xingjun [2 ,3 ]
Chung, Dongjun [2 ,3 ,4 ]
Riesenberg, Brian P. [2 ,3 ]
Velegraki, Maria [2 ,3 ]
Giuliani, Giuseppe D. [5 ,6 ]
Das, Komal [2 ,3 ]
Okimoto, Tamio [1 ]
Kwon, Hyunwoo [1 ,2 ,3 ]
Chakravarthy, Karthik B. [1 ,2 ,3 ]
Bolyard, Chelsea [2 ,3 ]
Wang, Yi [2 ,3 ]
He, Kai [2 ,3 ,7 ]
Gatti-Mays, Margaret [2 ,3 ,7 ]
Das, Jayajit [2 ,3 ,8 ]
Yang, Yiping [2 ,3 ,9 ]
Gewirth, Daniel T. [10 ]
Ma, Qin [2 ,3 ,4 ]
Carbone, David [2 ,3 ,7 ]
Li, Zihai [2 ,3 ,7 ]
机构
[1] Ohio State Univ, Coll Med, Columbus, OH 43210 USA
[2] Ohio State Univ, Comprehens Canc Ctr, Pelotonia Inst Immunooncol, Arthur G James Canc Hosp, Columbus, OH 43210 USA
[3] Ohio State Univ, Richard J Solove Res Inst, Columbus, OH 43210 USA
[4] Ohio State Univ, Coll Med, Dept Biomed Informat, Columbus, OH 43210 USA
[5] Nationwide Childrens Hosp, Battelle Ctr Math Med, Abigail Wexner Res Inst, Columbus, OH USA
[6] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA
[7] Ohio State Univ, Div Med Oncol, Dept Internal Med, Coll Med, Columbus, OH 43210 USA
[8] Ohio State Univ, Coll Med, Dept Pediat, Columbus, OH 43210 USA
[9] Ohio State Univ, Coll Med, Div Hematol, Columbus, OH 43210 USA
[10] Hauptman Woodward Med Res Inst, New York, NY USA
关键词
immunotherapy; CD8-positive T-lymphocytes; programmed cell death 1 receptor; transplantation immunology; TGF-BETA; EXPRESSION; TGF-BETA-1; RECEPTOR; TOLERANCE;
D O I
10.1136/jitc-2022-005433
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Immune checkpoint blockade (ICB) has revolutionized cancer immunotherapy. However, most patients with cancer fail to respond clinically. One potential reason is the accumulation of immunosuppressive transforming growth factor beta (TGF beta) in the tumor microenvironment (TME). TGF beta drives cancer immune evasion in part by inducing regulatory T cells (Tregs) and limiting CD8(+) T cell function. Glycoprotein-A repetitions predominant (GARP) is a cell surface docking receptor for activating latent TGF beta 1, TGF beta 2 and TGF beta 3, with its expression restricted predominantly to effector Tregs, cancer cells, and platelets. Methods We investigated the role of GARP in human patients with cancer by analyzing existing large databases. In addition, we generated and humanized an anti-GARP monoclonal antibody and evaluated its antitumor efficacy and underlying mechanisms of action in murine models of cancer. Results We demonstrate that GARP overexpression in human cancers correlates with a tolerogenic TME and poor clinical response to ICB, suggesting GARP blockade may improve cancer immunotherapy. We report on a unique anti-human GARP antibody (named PIIO-1) that specifically binds the ligand-interacting domain of all latent TGF beta isoforms. PIIO-1 lacks recognition of GARP-TGF beta complex on platelets. Using human LRRC32 (encoding GARP) knock-in mice, we find that PIIO-1 does not cause thrombocytopenia; is preferentially distributed in the TME; and exhibits therapeutic efficacy against GARP(+) and GARP(-) cancers, alone or in combination with anti-PD-1 antibody. Mechanistically, PIIO-1 treatment reduces canonical TGF beta signaling in tumor-infiltrating immune cells, prevents T cell exhaustion, and enhances CD8(+) T cell migration into the TME in a C-X-C motif chemokine receptor 3 (CXCR3)-dependent manner. Conclusion GARP contributes to multiple aspects of immune resistance in cancer. Anti-human GARP antibody PIIO-1 is an efficacious and safe strategy to block GARP-mediated LTGF beta activation, enhance CD8(+) T cell trafficking and functionality in the tumor, and overcome primary resistance to anti-PD-1 ICB. PIIO-1 therefore warrants clinical development as a novel cancer immunotherapeutic.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] PD-1 modulation promotes antitumor immunity by improving metabolic fitness of both PD-1+and PD-1-CD8+T cells in the tumor
    Pauken, Kristen E.
    Juneja, Vikram R.
    Sage, Peter T.
    LaFleur, Martin W.
    Kuchroo, Juhi R.
    Ringel, Alison
    Ron-Harel, Noga
    Maleri, Seth P.
    Freeman, Gordon J.
    Chevrier, Nicolas
    Haigis, Marcia C.
    Sharpe, Arlene H.
    CANCER IMMUNOLOGY RESEARCH, 2018, 6 (09)
  • [32] PD-1/cDC1 axis in the tumor draining lymph node regulates stem-like CD8+ T cell differentiation
    Hor, Jyh Liang
    Schrom, Edward
    Germain, Ronald
    JOURNAL OF IMMUNOLOGY, 2024, 212 (01):
  • [33] Combined blockade of TGF-β and PD-1 restores the function of tumor-infiltrating CD8+ T cells in glioblastoma
    Kim, A. R.
    Park, J.
    Kang, S-G.
    Moon, J. H.
    Kim, E. H.
    Park, S-H.
    Chang, J. H.
    Shin, E-C.
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2019, 49 : 1733 - 1733
  • [34] Mitoxantrone in combination with TGFß and PD-1 blockade remodels the tumor immune landscape enhancing neuroblastoma antitumor immunity.
    Lucarini, Valeria
    Melaiu, Ombretta
    D'Amico, Silvia
    Pastorino, Fabio
    Tempora, Patrizia
    De Ninno, Adele
    Businaro, Luca
    Ponzoni, Mirco
    Locatelli, Franco
    Fruci, Doriana
    CANCER RESEARCH, 2022, 82 (12)
  • [35] Cutting Edge: Identification of Autoreactive CD4+ and CD8+ T Cell Subsets Resistant to PD-1 Pathway Blockade
    Pauken, Kristen E.
    Nelson, Christine E.
    Martinov, Tijana
    Spanier, Justin A.
    Heffernan, James R.
    Sahli, Nathanael L.
    Quarnstrom, Clare F.
    Osum, Kevin C.
    Schenkel, Jason M.
    Jenkins, Marc K.
    Blazar, Bruce R.
    Vezys, Vaiva
    Fife, Brian T.
    JOURNAL OF IMMUNOLOGY, 2015, 194 (08): : 3551 - +
  • [36] Immunogenic clearance sensitizes cold tumor to PD-1 blockade by enhancing quantity and quality of CD8+T cells
    Nam, Gi-Hoon
    Choi, Yoonjeong
    Kim, In-San
    CANCER RESEARCH, 2020, 80 (16)
  • [37] Immunogenic clearance combined with PD-1 blockade elicits antitumor effect by promoting the recruitment and expansion of the effector memory-like CD8+ T cell
    Kim, Seong A
    Kim, Seohyun
    Hong, Yeonsun
    Choi, Yoonjeong
    Lee, Yeji
    Kwon, Minsu
    Park, Seung-Yoon
    Jeong, Cherlhyun
    Nam, Gi-Hoon
    Han, Rafael T.
    Kim, In-San
    TRANSLATIONAL ONCOLOGY, 2025, 51
  • [38] CD4+ T-cell immunity predicts long-lasting antitumor immunity after PD-1 blockade therapy.
    Kaira, Kyoichi
    Yamaguchi, Ou
    Yoshimura, Kenichi
    Mouri, Atsuto
    Shiono, Ayako
    Nishihara, Fuyumi
    Miura, Yu
    Shinomiya, Shun
    Hashimoto, Kosuke
    Murayama, Yoshitake
    Kitano, Shigehisa
    Kobayashi, Kunihiko
    Kagamu, Hiroshi
    JOURNAL OF CLINICAL ONCOLOGY, 2019, 37 (15)
  • [39] TCF-1 maintains CD8+ T cell stemness in tumor microenvironment
    Wen, Shuqiong
    Lu, Huanzi
    Wang, Dikan
    Guo, Junyi
    Dai, Wenxiao
    Wang, Zhi
    JOURNAL OF LEUKOCYTE BIOLOGY, 2021, 110 (03) : 585 - 590
  • [40] Increased CD8+ T-cell Infiltration and Efficacy for Multikinase Inhibitors After PD-1 Blockade in Hepatocellular Carcinoma
    Kikuchi, Hiroto
    Matsui, Aya
    Morita, Satoru
    Amoozgar, Zohreh
    Inoue, Koetsu
    Ruan, Zhiping
    Staiculescu, Daniel
    Wong, Jeffrey Sum-Lung
    Huang, Peigen
    Yau, Thomas
    Jain, Rakesh K.
    Duda, Dan G.
    JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2022, 114 (09): : 1301 - 1305