Simulating open quantum systems: from many-body interactions to stabilizer pumping

被引:97
|
作者
Mueller, M. [1 ,2 ,3 ]
Hammerer, K. [1 ,2 ,4 ,5 ]
Zhou, Y. L. [1 ,6 ]
Roos, C. F. [2 ,7 ]
Zoller, P. [1 ,2 ]
机构
[1] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[2] Austrian Acad Sci, Inst Quantenopt & Quanteninformat, A-6020 Innsbruck, Austria
[3] Univ Complutense, Fac Ciencias Fis, Dept Fis Teor 1, E-28040 Madrid, Spain
[4] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
[5] Leibniz Univ Hannover, Inst Gravitat Phys, D-30167 Hannover, Germany
[6] Natl Univ Def Technol, Coll Sci, Changsha 410073, Hunan, Peoples R China
[7] Univ Innsbruck, Inst Expt Phys, A-6020 Innsbruck, Austria
来源
NEW JOURNAL OF PHYSICS | 2011年 / 13卷
基金
奥地利科学基金会;
关键词
ERROR-CORRECTING CODES; MULTIPARTICLE ENTANGLEMENT; STATES; SPINS; COMPUTATION; DYNAMICS; PHYSICS; DRIVEN; ATOMS;
D O I
10.1088/1367-2630/13/8/085007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In a recent experiment, Barreiro et al (2011 Nature 470 486) demonstrated the fundamental building blocks of an open-system quantum simulator with trapped ions. Using up to five ions, dynamics were realized by sequences that combined single- and multi-qubit entangling gate operations with optical pumping. This enabled the implementation of both coherent many-body dynamics and dissipative processes by controlling the coupling of the system to an artificial, suitably tailored environment. This engineering was illustrated by the dissipative preparation of entangled two- and four-qubit states, the simulation of coherent four-body spin interactions and the quantum non-demolition measurement of a multi-qubit stabilizer operator. In this paper, we present the theoretical framework of this gate-based ('digital') simulation approach for open-system dynamics with trapped ions. In addition, we discuss how within this simulation approach, minimal instances of spin models of interest in the context of topological quantum computing and condensed matter physics can be realized in state-of-the-art linear ion-trap quantum computing architectures. We outline concrete simulation schemes for Kitaev's toric code Hamiltonian and a recently suggested color code model. The presented simulation protocols can be adapted to scalable and two-dimensional ion-trap architectures, which are currently under development.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] SYNTHETIC QUANTUM MANY-BODY SYSTEMS
    Guerlin, C.
    Baumann, K.
    Brennecke, F.
    Greif, D.
    Joerdens, R.
    Leinss, S.
    Strohmaier, N.
    Tarruell, L.
    Uehlinger, T.
    Moritz, H.
    Esslinger, T.
    LASER SPECTROSCOPY, 2010, : 212 - 221
  • [32] ERGODICITY OF QUANTUM MANY-BODY SYSTEMS
    JANNER, A
    HELVETICA PHYSICA ACTA, 1963, 36 (02): : 155 - &
  • [33] Seniority in quantum many-body systems
    Van Isacker, P.
    SYMMETRIES IN NATURE, 2010, 1323 : 141 - 152
  • [34] Negentropy in Many-Body Quantum Systems
    Quarati, Piero
    Lissia, Marcello
    Scarfone, Antonio M.
    ENTROPY, 2016, 18 (02)
  • [35] Simulating quantum many-body dynamics on a current digital quantum computer
    Adam Smith
    M. S. Kim
    Frank Pollmann
    Johannes Knolle
    npj Quantum Information, 5
  • [36] Quantum advantage from energy measurements of many-body quantum systems
    Novo, Leonardo
    Bermejo-Vega, Juani
    Garcia-Patron, Raul
    QUANTUM, 2021, 5
  • [37] Simulating quantum many-body dynamics on a current digital quantum computer
    Smith, Adam
    Kim, M. S.
    Pollmann, Frank
    Knolle, Johannes
    NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [38] Many-body system beats computer in simulating quantum dynamics
    Paddock, Ashley N.
    PHOTONICS SPECTRA, 2012, 46 (06) : 23 - 24
  • [39] Scrambling of quantum information in quantum many-body systems
    Iyoda, Eiki
    Sagawa, Takahiro
    PHYSICAL REVIEW A, 2018, 97 (04)
  • [40] Extracting work from correlated many-body quantum systems
    Salvia, Raffaele
    Giovannetti, Vittorio
    PHYSICAL REVIEW A, 2022, 105 (01)