Adapted GooLeNet for Visual Question Answering

被引:3
|
作者
Huang, Jie [1 ]
Hu, Yue [1 ]
Yang, Weilong [1 ]
机构
[1] Natl Univ Def Technol, Coll Syst Engn, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
visual question answering; Adapted GooLeNet; MUTAN;
D O I
10.1109/ICMCCE.2018.00132
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual Question Answering (VQA) aims at answering a question about an image. In this work, we introduce an effective architecture --Adapted GooLeNet (AG)-- into a typical VQA method MUTAN instead of LSTM for question features capturing. This improvement can capture more levels of language granularities in parallel, because of the various sizes of filters in AG. The empirical study on the benchmark dataset of VQA demonstrates that capturing sentence features on different levels of granularities benefit sentence modelling by utilizing AG.
引用
收藏
页码:603 / 606
页数:4
相关论文
共 50 条
  • [41] LANGUAGE AND VISUAL RELATIONS ENCODING FOR VISUAL QUESTION ANSWERING
    Liu, Fei
    Liu, Jing
    Fang, Zhiwei
    Lu, Hanqing
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 3307 - 3311
  • [42] Compositional Substitutivity of Visual Reasoning for Visual Question Answering
    Li, Chuanhao
    Li, Zhen
    Jing, Chenchen
    Wu, Yuwei
    Zhai, Mingliang
    Jia, Yunde
    COMPUTER VISION - ECCV 2024, PT XLVIII, 2025, 15106 : 143 - 160
  • [43] Visual Question Answering using Explicit Visual Attention
    Lioutas, Vasileios
    Passalis, Nikolaos
    Tefas, Anastasios
    2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
  • [44] Exploiting hierarchical visual features for visual question answering
    Hong, Jongkwang
    Fu, Jianlong
    Uh, Youngjung
    Mei, Tao
    Byun, Hyeran
    NEUROCOMPUTING, 2019, 351 : 187 - 195
  • [45] QUES-TO-VISUAL GUIDED VISUAL QUESTION ANSWERING
    Wu, Xiangyu
    Lu, Jianfeng
    Li, Zhuanfeng
    Xiong, Fengchao
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 4193 - 4197
  • [46] PRIOR VISUAL RELATIONSHIP REASONING FOR VISUAL QUESTION ANSWERING
    Yang, Zhuoqian
    Qin, Zengchang
    Yu, Jing
    Wan, Tao
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1411 - 1415
  • [47] Multiple answers to a question: a new approach for visual question answering
    Hosseinabad, Sayedshayan Hashemi
    Safayani, Mehran
    Mirzaei, Abdolreza
    VISUAL COMPUTER, 2021, 37 (01): : 119 - 131
  • [48] Question-Guided Hybrid Convolution for Visual Question Answering
    Gao, Peng
    Li, Hongsheng
    Li, Shuang
    Lu, Pan
    Li, Yikang
    Hoi, Steven C. H.
    Wang, Xiaogang
    COMPUTER VISION - ECCV 2018, PT I, 2018, 11205 : 485 - 501
  • [49] Generating Question Relevant Captions to Aid Visual Question Answering
    Wu, Jialin
    Hu, Zeyuan
    Mooney, Raymond J.
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 3585 - 3594
  • [50] Debiased Visual Question Answering via the perspective of question types
    Huai, Tianyu
    Yang, Shuwen
    Zhang, Junhang
    Zhao, Jiabao
    He, Liang
    PATTERN RECOGNITION LETTERS, 2024, 178 : 181 - 187