Fourier analysis of Turing-like pattern formation in cellular automaton models

被引:21
|
作者
Dormann, S [1 ]
Deutsch, A
Lawniczak, AT
机构
[1] Univ Osnabruck, Dept Math, D-49069 Osnabruck, Germany
[2] Max Planck Inst Phys Complex Syst, D-01187 Dresden, Germany
[3] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[4] Fields Inst Res Math Sci, Toronto, ON M5T 3J1, Canada
关键词
cellular automaton; lattice-gas automaton; Turing pattern; mean-field analysis; Boltzmann equation;
D O I
10.1016/S0167-739X(00)00068-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The novelty of this paper is the study of emergence of diffusion-induced (Turing-like) patterns from a microscopic point of view, namely, in terms of cellular automata. Formally, the cellular automaton model is described in lattice-gas terminology [H. Bussemaker, A. Deutsch, E. Geigant, Phys. Rev. Lett. 78 (1997) 5018-5021]. The automaton rules capture in abstract form the essential ideas of activator-inhibitor interactions of biological systems. In spite of the automaton's simplicity, self-organised formation of stationary spatial patterns emerging from a randomly perturbed uniform state is observed. Fourier analysis of approximate mean-field kinetic difference equations [J.P. Boon, D. Dab, R. Kapral, A.T. Lawniczak, Phys. Rep. 273 (1996) 55-147] yields a critical wave length and a "Turing condition" for the onset of pattern formation. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:901 / 909
页数:9
相关论文
共 50 条
  • [11] A non-linear analysis of Turing pattern formation
    Chen, Yanyan
    Buceta, Javier
    PLOS ONE, 2019, 14 (08):
  • [12] Pattern formation in spatially heterogeneous Turing reaction-diffusion models
    Page, K
    Maini, PK
    Monk, NAM
    PHYSICA D-NONLINEAR PHENOMENA, 2003, 181 (1-2) : 80 - 101
  • [13] Simple modeling of branching pattern formation in a reaction diffusion system with cellular automaton
    Motoike, Ikuko N.
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2007, 76 (03)
  • [14] A Pattern Formation Mechanism of a Cellular Automaton Evolving on a Mutual Determination Rule of Variables and a Dynamics
    Harada, Kouji
    Ishida, Yoshiteru
    PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL LIFE AND ROBOTICS (AROB 17TH '12), 2012, : 321 - 324
  • [15] On (in)validating environmental models. 1. Principles for formulating a Turing-like Test for determining when a model is fit-for purpose
    Beven, Keith
    Lane, Stuart
    HYDROLOGICAL PROCESSES, 2022, 36 (10)
  • [16] The role of trans-membrane signal transduction in turing-type cellular pattern formation
    Rauch, EM
    Millonas, MM
    JOURNAL OF THEORETICAL BIOLOGY, 2004, 226 (04) : 401 - 407
  • [17] The finite volume spectral element method to solve Turing models in the biological pattern formation
    Shakeri, Fatemeh
    Dehghan, Mehdi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (12) : 4322 - 4336
  • [18] Cellular automaton models for time-correlated random walks: derivation and analysis
    J. M. Nava-Sedeño
    H. Hatzikirou
    R. Klages
    A. Deutsch
    Scientific Reports, 7
  • [19] Cellular automaton models for time-correlated random walks: derivation and analysis
    Nava-Sedeno, J. M.
    Hatzikirou, H.
    Klages, R.
    Deutsch, A.
    SCIENTIFIC REPORTS, 2017, 7
  • [20] THE BIFURCATION ANALYSIS OF TURING PATTERN FORMATION INDUCED BY DELAY AND DIFFUSION IN THE SCHNAKENBERG SYSTEM
    Yi, Fengqi
    Gaffney, Eamonn A.
    Seirin-Lee, Sungrim
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (02): : 647 - 668