Shape Analysis of Elastic Curves in Euclidean Spaces

被引:402
|
作者
Srivastava, Anuj [1 ]
Klassen, Eric [2 ]
Joshi, Shantanu H. [3 ]
Jermyn, Ian H. [4 ]
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
[2] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
[3] Univ Calif Los Angeles, Sch Med, Lab Neuro Imaging, Dept Neurol, Los Angeles, CA 90095 USA
[4] Univ Durham, Sci Labs, Dept Math Sci, Durham DH1 3LE, England
基金
美国国家科学基金会;
关键词
Elastic curves; Riemannian shape analysis; elastic metric; Fisher-Rao metric; square-root representations; path straightening method; elastic geodesics; parallel transport; shape models; FACE RECOGNITION;
D O I
10.1109/TPAMI.2010.184
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a square-root velocity (SRV) representation for analyzing shapes of curves in euclidean spaces under an elastic metric. In this SRV representation, the elastic metric simplifies to the L-2 metric, the reparameterization group acts by isometries, and the space of unit length curves becomes the unit sphere. The shape space of closed curves is the quotient space of (a submanifold of) the unit sphere, modulo rotation, and reparameterization groups, and we find geodesics in that space using a path straightening approach. These geodesics and geodesic distances provide a framework for optimally matching, deforming, and comparing shapes. These ideas are demonstrated using: 1) shape analysis of cylindrical helices for studying protein structure, 2) shape analysis of facial curves for recognizing faces, 3) a wrapped probability distribution for capturing shapes of planar closed curves, and 4) parallel transport of deformations for predicting shapes from novel poses.
引用
收藏
页码:1415 / 1428
页数:14
相关论文
共 50 条
  • [41] A Statistical Framework for Elastic Shape Analysis of Spatio-Temporal Evolutions of Planar Closed Curves
    Samir, Chafik
    Kurtek, Sebastian
    Strait, Justin
    Joshi, Shantanu H.
    PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, : 972 - 980
  • [42] ON SOME QUESTIONS CONCERNING THE DIFFERENTIAL GEOMETRY OF CURVES IN N-DIMENSIONAL EUCLIDEAN SPACES
    MOLNAR, GS
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1983, 30 (1-2): : 57 - 73
  • [43] Bi-null Cartan curves in semi-Euclidean spaces of index 2
    Sakaki, Makoto
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2012, 53 (02): : 421 - 436
  • [44] Bi-null Cartan curves in semi-Euclidean spaces of index 2
    Makoto Sakaki
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2012, 53 (2): : 421 - 436
  • [45] Integration of geometric elements, Euclidean relations, and motion curves for parametric shape and motion estimation
    Bazin, PL
    Vézien, JM
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (12) : 1960 - 1976
  • [46] On Distance Mapping from non-Euclidean Spaces to Euclidean Spaces
    Ren, Wei
    Miche, Yoan
    Oliver, Ian
    Holtmanns, Silke
    Bjork, Kaj-Mikael
    Lendasse, Amaury
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, CD-MAKE 2017, 2017, 10410 : 3 - 13
  • [47] ANALYSIS OF PROBABILISTIC COMBINATORIAL OPTIMIZATION PROBLEMS IN EUCLIDEAN SPACES
    JAILLET, P
    MATHEMATICS OF OPERATIONS RESEARCH, 1993, 18 (01) : 51 - 70
  • [48] Analysis of a simple evolutionary algorithm for minimization in euclidean spaces
    Jägersküpper, J
    AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2003, 2719 : 1068 - 1079
  • [49] Variational analysis of inextensible elastic curves
    Bevilacqua, G.
    Lussardi, L.
    Marzocchi, A.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2260):
  • [50] LOCALLY PERIPHERALLY EUCLIDEAN SPACES ARE LOCALLY EUCLIDEAN
    HARROLD, OG
    ANNALS OF MATHEMATICS, 1961, 74 (02) : 207 - &