Investigation of the Fatigue Stress of Orthotropic Steel Decks Based on an Arch Bridge with the Application of the Arlequin Method

被引:7
|
作者
Cheng, Cheng [1 ]
Xie, Xu [1 ]
Yu, Wentao [2 ]
机构
[1] Zhejiang Univ, Coll Civil Engn & Architecture, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ Co Ltd, Architectural Design & Res Inst, Hangzhou 310058, Peoples R China
关键词
orthotropic steel deck; premature fatigue cracks; finite element analysis; Arlequin framework; engineering guidance; CRACKS;
D O I
10.3390/ma14247653
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Orthotropic steel decks are widely used in the construction of steel bridges. Although there are many fatigue-evaluation methods stipulated by codes, unexpected fatigue cracks are still detected in some bridges. To justify whether the local finite element model commonly used in fatigue investigations on orthotropic decks can correctly instruct engineering practices, the Arlequin framework is applied in this paper to determine the full fatigue stress under traffic loads. The convergence on and validity of this application for orthotropic decks are checked. Results show that the Arlequin model for deck-fatigue analysis established in this paper tends to be an efficient method for complete fatigue stress acquisition, whereby the vulnerable sites of orthotropic steel decks under traffic loads are defined. Vehicles near the flexible components, such as hangers or cables, can have adverse effects on the fatigue durability of decks. Additionally, the total number of vehicles and their arrangement concentration also affect fatigue performance. Complex traffic conditions cannot be fully loaded in local models. Regardless of the gross bridge mechanics and deck deformation, the fatigue stress range is underestimated by about 30-40%. Such a difference in fatigue assessment seems to explain the premature cracks observed in orthotropic steel decks.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Improving the fatigue design of orthotropic steel decks
    De Backer, H.
    Nagy, W.
    Outtier, A.
    MAINTENANCE, SAFETY, RISK, MANAGEMENT AND LIFE-CYCLE PERFORMANCE OF BRIDGES, 2018, : 458 - 464
  • [42] Fatigue failure and optimization of double-sided weld in orthotropic steel bridge decks
    Fang, Zhao
    Ding, Youliang
    Wei, Xiaochen
    Li, Aiqun
    Geng, Fangfang
    ENGINEERING FAILURE ANALYSIS, 2020, 116
  • [43] Stiffener soffit stress distribution in ballasted orthotropic steel railway bridge decks
    Van Bogaert, P
    De Corte, W
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON STEEL STRUCTURES OF THE 2000'S, 2000, : 299 - 304
  • [44] Fatigue analysis of rib-to-deck joints in steel orthotropic decks of Chongqi Bridge
    Wang Hui
    Han Suyu
    He Shiqin
    Yan Fei
    PROCEEDINGS OF THE 2017 6TH INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND SUSTAINABLE DEVELOPMENT (ICEESD 2017), 2017, 129 : 146 - 149
  • [45] Fatigue assessment for deck plates in orthotropic bridge decks
    Maljaars, Johan
    van Dooren, Frank
    Kolstein, Henk
    STEEL CONSTRUCTION-DESIGN AND RESEARCH, 2012, 5 (02): : 93 - 100
  • [46] State-of-the-art of fatigue performance and estimation approach of orthotropic steel bridge decks
    Yang, Haibo
    Wang, Ping
    Karakas, Ozler
    Qian, Hongliang
    STRUCTURES, 2024, 70
  • [47] Methods to Increase Fatigue Life at Rib to Deck Connection in Orthotropic Steel Bridge Decks
    Diwakar, K. C.
    Dahal, Bhim Kumar
    Dangi, Harish
    CIVILENG, 2024, 5 (01): : 288 - 306
  • [48] Fatigue Reliability Assessment for Orthotropic Steel Bridge Decks Considering Load Sequence Effects
    Xu, Jun-Hong
    Zhou, Guang-Dong
    Zhu, Tai-Yong
    FRONTIERS IN MATERIALS, 2021, 8
  • [49] Experimental and Numerical Investigation of Welding Residual Stress of U-Rib Joints in Orthotropic Steel Bridge Decks
    Huang, Zhiqiang
    Su, Wenxue
    Shi, Jun
    Li, Tao
    Cao, Hongyou
    BUILDINGS, 2025, 15 (02)
  • [50] Fatigue resistance of rib-to-bimetallic steel deck welded joints in orthotropic steel bridge decks
    Liao, Xiaowei
    Wei, Hanlin
    Pan, Hongyang
    Li, Hai-Ting
    Sun, Bo
    Xin, Haohui
    THIN-WALLED STRUCTURES, 2024, 194