Ammonia inhibition and microbial adaptation in continuous single-chamber microbial fuel cells

被引:49
|
作者
Kim, Hyun-Woo [2 ]
Nam, Joo-Youn [1 ]
Shin, Hang-Sik [3 ]
机构
[1] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA
[2] Arizona State Univ, Ctr Environm Biotechnol, Biodesign Inst, Tempe, AZ 85287 USA
[3] Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Taejon 305701, South Korea
关键词
Ammonia inhibition; Continuous operation; Single-chamber microbial fuel cell; Power density; Conductivity; THERMOPHILIC ANAEROBIC-DIGESTION; SWINE WASTE-WATER; ELECTRICITY-GENERATION; NITRIFYING BACTERIA; OXIDATION; MEMBRANE; TOXICITY; BIOFILMS; EXCHANGE; ACETATE;
D O I
10.1016/j.jpowsour.2011.03.061
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Here, we report that a continuous single-chamber microbial fuel cell (MFC) is applicable to wastewaters containing a high nitrogen concentration using a process of adaptation. Continuous experiments are conducted to investigate the inhibitory effect of total ammonia nitrogen (TAN) on the MFC using influents with various concentrations of TAN ranged from 84 to 10,000 mg N L(-1). As the TAN concentration increases up to 3500 mg N L(-1). the maximum power density remains at 6.1W m(-3). However, as the concentration further increases. TAN significantly inhibits the maximum power density, which is reduced at saturation to 1.4W m(-3) at 10,000 mg N L(-1). We confirm that the adapted electrical performance of a continuous MFC can generate approximately 44% higher power density than the conductivity control. A comparative study reveals that the power densities obtained from a continuous MFC can sustain 7-fold higher TAN concentration than that of previous batch MFCs. TAN removal efficiencies are limited to less than 10%, whereas acetate removal efficiencies remain as high as 93-99%. The increased threshold TAN of the continuous MFC suggests that microbial acclimation in a continuous MFC can allow the electrochemical functioning of the anode-attached bacteria to resist ammonia inhibition. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:6210 / 6213
页数:4
相关论文
共 50 条
  • [41] Performance evaluation of a single-chamber microbial fuel cell with Zygosaccharomyces bailii
    Boas, J. Vilas
    Marcon, L. R. C.
    Oliveira, V. B.
    Simoes, M.
    Pinto, A. M. F. R.
    BIORESOURCE TECHNOLOGY REPORTS, 2023, 23
  • [42] Low Cost Materials for the Air Cathodes in Single-Chamber Microbial Fuel Cells: A Mini Review
    Wang, Xu
    Zhang, Enren
    Yu, Eileen Hao
    Scott, Keith
    3RD INTERNATIONAL CONFERENCE ON APPLIED ENGINEERING, 2016, 51 : 37 - 42
  • [43] Electrochemical analysis of separators used in single-chamber, air-cathode microbial fuel cells
    Wei, Bin
    Tokash, Justin C.
    Zhang, Fang
    Kim, Younggy
    Logan, Bruce E.
    ELECTROCHIMICA ACTA, 2013, 89 : 45 - 51
  • [44] Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production
    Abourached, Carole
    Catal, Tunc
    Liu, Hong
    WATER RESEARCH, 2014, 51 : 228 - 233
  • [45] Increasing power generation for scaling up single-chamber air cathode microbial fuel cells
    Cheng, Shaoan
    Logan, Bruce E.
    BIORESOURCE TECHNOLOGY, 2011, 102 (06) : 4468 - 4473
  • [46] The Important Role of Denitrifying Exoelectrogens in Single-Chamber Microbial Fuel Cells after Nitrate Exposure
    Jin, Xiaojun
    Wang, Wenyi
    Yan, Zhuo
    Xu, Dake
    SEPARATIONS, 2024, 11 (06)
  • [47] Olive mill wastewater treatment in single-chamber air-cathode microbial fuel cells
    Hakan Bermek
    Tunc Catal
    S. Süha Akan
    Mehmet Sefa Ulutaş
    Mert Kumru
    Mine Özgüven
    Hong Liu
    Beraat Özçelik
    Alper Tunga Akarsubaşı
    World Journal of Microbiology and Biotechnology, 2014, 30 : 1177 - 1185
  • [48] Electrochemical decolorization of methyl orange powered by bioelectricity from single-chamber microbial fuel cells
    Zhang, Baogang
    Wang, Zhijun
    Zhou, Xiang
    Shi, Chunhong
    Guo, Huaming
    Feng, Chuanping
    BIORESOURCE TECHNOLOGY, 2015, 181 : 360 - 362
  • [49] Olive mill wastewater treatment in single-chamber air-cathode microbial fuel cells
    Bermek, Hakan
    Catal, Tunc
    Akan, S. Suha
    Ulutas, Mehmet Sefa
    Kumru, Mert
    Ozguven, Mine
    Liu, Hong
    Ozcelik, Beraat
    Akarsubasi, Alper Tunga
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2014, 30 (04): : 1177 - 1185
  • [50] Enhanced nitrogen removal in single-chamber microbial fuel cells with increased gas diffusion areas
    Yan, Hengjing
    Regan, John M.
    BIOTECHNOLOGY AND BIOENGINEERING, 2013, 110 (03) : 785 - 791