Understanding the electrical response and sensing mechanism of carbon-nanotube-based gas sensors

被引:39
|
作者
Dube, Isha [1 ]
Jimenez, David [2 ]
Fedorov, Georgy [3 ,4 ,5 ]
Boyd, Anthony [1 ]
Gayduchenko, Igor [5 ,6 ]
Paranjape, Makarand [1 ]
Barbara, Paola [1 ]
机构
[1] Georgetown Univ, Dept Phys, Washington, DC 20057 USA
[2] Univ Autonoma Barcelona, Escola Engn, Dept Elect Engn, Bellaterra 08193, Spain
[3] Moscow Inst Phys & Technol, Dolgoprundy 141700, Moscow Region, Russia
[4] Natl Res Univ Elect Technol MIET, Zelenograd 124498, Russia
[5] Moscow State Pedag Univ, Dept Phys, Moscow 119991, Russia
[6] Natl Res Ctr Kurchatov Inst, Moscow 123182, Russia
基金
美国国家科学基金会; 俄罗斯科学基金会;
关键词
FILMS; SENSITIVITY; ADSORPTION; TRANSISTOR; PALLADIUM; CONTACT;
D O I
10.1016/j.carbon.2015.01.060
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Gas sensors based on carbon nanotube field effect transistors (CNFETs) have outstanding sensitivity compared to existing technologies. However, the lack of understanding of the sensing mechanism has greatly hindered progress on calibration standards and customization of these nano-sensors. Calibration requires identifying fundamental transistor parameters and establishing how they vary in the presence of a gas. This work focuses on modeling the electrical response of CNTFETs in the presence of oxidizing (NO2) and reducing (NH3) gases and determining how the transistor characteristics are affected by gas-induced changes of contact properties, such as the Schottky barrier height and width, and by the doping level of the nanotube. From the theoretical fits of the experimental transfer characteristics at different concentrations of NO2 and NH3, we find that the CNTFET response can be modeled by introducing changes in the Schottky barrier height. These changes are directly related to the changes in the metal work function of the electrodes that we determine experimentally, independently, with a Kelvin probe. Our analysis yields a direct correlation between the ON - current and the changes in the electrode metal work function. Doping due to molecules adsorbed at the carbon-nanotube/metal interface also affects the transfer characteristics. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:330 / 337
页数:8
相关论文
共 50 条
  • [21] Fabrication of Carbon-Nanotube-Based Integrated Power Inductor With Dual Conduction Mechanism
    Mousa, Omar F.
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2014, 29 (01) : 465 - 472
  • [22] Nanowelded carbon-nanotube-based solar microcells
    Chen, Changxin
    Lu, Yang
    Kong, Eric S.
    Zhang, Yafei
    Lee, Shuit-Tong
    SMALL, 2008, 4 (09) : 1313 - 1318
  • [23] Mechanical deformation of carbon-nanotube-based aerogels
    Shin, Swanee J.
    Kucheyev, Sergei O.
    Worsley, Marcus A.
    Hamza, Alex V.
    CARBON, 2012, 50 (14) : 5340 - 5342
  • [24] Raman spectroscopy of carbon-nanotube-based composites
    Zhao, Q
    Wagner, HD
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 362 (1824): : 2407 - 2424
  • [25] Carbon-nanotube-based hybrid materials: Nanopeapods
    Kitaura, Ryo
    Shinohara, Hisanori
    CHEMISTRY-AN ASIAN JOURNAL, 2006, 1 (05) : 646 - 655
  • [26] Carbon-Nanotube-Based Materials for Protein Crystallization
    Asanithi, Piyapong
    Saridakis, Emmanuel
    Govada, Lata
    Jurewicz, Izabela
    Brunner, Eric W.
    Ponnusamy, Rajesh
    Cleaver, Jamie A. S.
    Dalton, Alan B.
    Chayen, Naomi E.
    Sear, Richard P.
    ACS APPLIED MATERIALS & INTERFACES, 2009, 1 (06) : 1203 - 1210
  • [27] Carbon-nanotube-based Nano Electromechanical Switches
    Lee, SangWook
    Eriksson, Anders
    Sourab, Abdelrahim A.
    Campbell, Eleanor E. B.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 55 (03) : 957 - 961
  • [28] Carbon-Nanotube-Based Thermoelectric Materials and Devices
    Blackburn, Jeffrey L.
    Ferguson, Andrew J.
    Cho, Chungyeon
    Grunlan, Jaime C.
    ADVANCED MATERIALS, 2018, 30 (11)
  • [29] A carbon-nanotube-based tensor processing unit
    Si, Jia
    Zhang, Panpan
    Zhao, Chenyi
    Lin, Dongyi
    Xu, Lin
    Xu, Haitao
    Liu, Lijun
    Jiang, Jianhua
    Peng, Lian-Mao
    Zhang, Zhiyong
    NATURE ELECTRONICS, 2024, 7 (08): : 684 - 693
  • [30] Carbon-nanotube-based nano electromechanical switch
    Hwang, HJ
    Kang, JW
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2005, 27 (1-2): : 163 - 175