SPATIOTEMPORAL COVARIANCE FUNCTIONS FOR LAPLACIAN ARMA FIELDS IN HIGHER DIMENSIONS

被引:1
|
作者
Terdik, Gyorgy H. [1 ]
机构
[1] Univ Debrecen, Fac Informat, H-4026 Debrecen, Hungary
关键词
  Isotropy; homogeneity; stationarity; space-time interaction; spectral density; Whittle-Mat?rn model; Laplacian ARMA fields in higher spatial dimensions; random fields on sphere; MODELS; EQUATION;
D O I
10.1090/tpms/1173
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper presents clear formulae of the covariance functions of Lapla-cian ARMA fields in terms of coefficients and Bessel functions in higher spatial dimen-sions. Spectral methods are used for the study of spatiotemporal Laplacian ARMA fields in Euclidean spaces and spheres therein with dimension d >= 2.
引用
收藏
页码:111 / 132
页数:22
相关论文
共 50 条
  • [1] On the admissibility of spherical spatial covariance functions in higher dimensions
    Su, Yingcai
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2022, 217 : 92 - 105
  • [2] Cross-covariance functions for multivariate random fields based on latent dimensions
    Apanasovich, Tatiyana V.
    Genton, Marc G.
    BIOMETRIKA, 2010, 97 (01) : 15 - 30
  • [4] Fredholm alternative for the p-Laplacian in higher dimensions
    Drábek, P
    Holubová, G
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (01) : 182 - 194
  • [5] Rational covariance functions for nonstationary random fields
    Ma, Chunsheng
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (02) : 895 - 897
  • [6] New compactly supported spatiotemporal covariance functions from SPDEs
    M. D. Ruiz-Medina
    J. M. Angulo
    G. Christakos
    R. Fernández-Pascual
    Statistical Methods & Applications, 2016, 25 : 125 - 141
  • [7] New compactly supported spatiotemporal covariance functions from SPDEs
    Ruiz-Medina, M. D.
    Angulo, J. M.
    Christakos, G.
    Fernandez-Pascual, R.
    STATISTICAL METHODS AND APPLICATIONS, 2016, 25 (01): : 125 - 141
  • [8] ON FUNCTIONS OF BOUNDED VARIATION IN HIGHER DIMENSIONS
    GORA, P
    BOYARSKY, A
    AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (02): : 159 - 160
  • [9] Generalized analytic functions in higher dimensions
    Tutschke, Wolfgang
    GEORGIAN MATHEMATICAL JOURNAL, 2007, 14 (03) : 581 - 595
  • [10] Stationary Boundary Points for a Laplacian Growth Problem in Higher Dimensions
    Stephen J. Gardiner
    Tomas Sjödin
    Archive for Rational Mechanics and Analysis, 2014, 213 : 503 - 526