Analytical Period-m Motions in a Parametric, Quadratic Nonlinear Oscillator

被引:0
|
作者
Luo, Albert C. J. [1 ]
Yu, Bo [1 ]
机构
[1] Southern Illinois Univ Edwardsville, Edwardsville, IL 62026 USA
关键词
MATHIEU-DUFFING OSCILLATOR;
D O I
10.1007/978-3-319-28764-5_9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Analytical solutions of period-m motions in a parametric quadratic nonlinear oscillator are obtained through the finite Fourier series, and the corresponding stability and bifurcation analysis for periodic motions are discussed. The bifurcation trees of periodic motions to chaos in a parametric oscillator with quadratic nonlinearity are presented. Numerical illustration shows good agreement between the analytical and numerical results.
引用
收藏
页码:247 / 258
页数:12
相关论文
共 50 条
  • [41] Parametric Pair of Waves as a Nonlinear Oscillator
    Safonov, V. L.
    Shi, Q.
    Mino, M.
    Yamazaki, H.
    Journal of the Physical Society of Japan, 66 (07):
  • [42] Parametric pair of waves as a nonlinear oscillator
    Safonov, VL
    Shi, QF
    Mino, M
    Yamazaki, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (07) : 1916 - 1919
  • [43] Effects of parametric noise on a nonlinear oscillator
    Mallick, K
    Marcq, P
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 325 (1-2) : 213 - 219
  • [44] QUANTUM FLUCTUATIONS OF A NONLINEAR PARAMETRIC OSCILLATOR
    MELIKBARKHUDAROV, TK
    MINASIAN, LL
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1994, 27 (06) : 1257 - 1268
  • [45] Numerical scheme for period-m motion of second-order nonlinear dynamical systems based on generalized harmonic balance method
    Yuefang Wang
    Zhiwei Liu
    Nonlinear Dynamics, 2016, 84 : 323 - 340
  • [46] Bifurcation Trees of Period-1 Motions to Chaos in a Two-Degree-of-Freedom, Nonlinear Oscillator
    Luo, Albert C. J.
    Yu, Bo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (13):
  • [47] Solutions of a quadratic nonlinear oscillator: Iteration procedure
    Hu, H.
    JOURNAL OF SOUND AND VIBRATION, 2006, 298 (4-5) : 1159 - 1165
  • [48] Bifurcation trees of periodic motions to chaos in a parametric Duffing oscillator
    Luo A.C.J.
    Ma H.
    International Journal of Dynamics and Control, 2018, 6 (2) : 425 - 458
  • [49] Parametric control of motions of nonlinear oscillatory systems
    Akulenko, L.D.
    Prikladnaya Matematika i Mekhanika, 2001, 65 (01): : 3 - 14
  • [50] Sequent period-(2m − 1) motions to chaos in the van der Pol oscillator
    Xu Y.
    Luo A.C.J.
    International Journal of Dynamics and Control, 2019, 7 (03): : 795 - 807