Data-Driven Predictive Control With Switched Subspace Matrices for an SCR System

被引:0
|
作者
Zhao, Jinghua [1 ,2 ]
Liu, Jie [1 ]
Sun, Hongyu [1 ]
Hu, Yunfeng [2 ]
Sun, Yao [2 ]
Xie, Fangxi [2 ]
机构
[1] Jilin Normal Univ, Comp Coll, Siping 130022, Peoples R China
[2] Jilin Univ, State Key Lab Automot Simulat & Control, Changchun 130022, Peoples R China
关键词
Catalysts; Predictive models; Vehicle dynamics; Robustness; Real-time systems; Data models; Transient analysis; Time-varying systems; Optimization; Subspace identification; data-driven predictive control; SCR systems;
D O I
10.1109/ACCESS.2022.3213050
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Selective catalytic reduction (SCR) systems are distributed systems with strong time-varying parameter characteristics such that an accurate model for it is difficult to establish. Its control task simultaneously achieving high NOx conversion efficiency and low NH3 slip is a typical multi-objective and multi-constraint problem, which is suitable to be solved in the framework of the model predictive control (MPC). However, how to find a data-driven identification method based on the dynamic characteristics of an SCR system and a corresponding MPC method for satisfying its emission requirements remain a formidable challenge. The sufficient identification for the traditional identification method with fixed subspace model requires an excessively high order subspace matrix, such that a degradation in real-time performance is caused and the generality of the method under non-identification conditions is limited. In this paper, utilizing the transient data of the SCR system under the WHTC cycle, a novel identification method for some lower order subspace matrices excited by the segmented data referring to the dynamic of the ammonia coverage ratio is established. A corresponding predictive controller with the switched subspace matrices according to working conditions is designed in order to further improve its real-time performance, generality and robustness. The simulation results show that under the identification condition the proposed predictive controller compared to the traditional method can improve the emissions of NOx and NH3, that under the non-identification condition the proposed predictive controller can also improve the emissions and its optimization effects have better robustness to uncertainties of the transient cycle, and that the proposed predictive controller saves an significant computation time.
引用
收藏
页码:107616 / 107629
页数:14
相关论文
共 50 条
  • [41] DATA-DRIVEN INDIRECT ADAPTIVE MODEL PREDICTIVE CONTROL
    Wahab, Norhaliza
    Katebi, Mohamed Reza
    Rahmat, Mohd Fua'ad
    Bunyamin, Salinda
    JURNAL TEKNOLOGI, 2011, 54
  • [42] Towards Data-Driven Predictive Control Using Wavelets
    Sathyanarayanan, Kiran Kumar
    Pan, Guanru
    Faulwasser, Timm
    IFAC PAPERSONLINE, 2023, 56 (02): : 632 - 637
  • [43] Implicit Predictors in Regularized Data-Driven Predictive Control
    Klaedtke, Manuel
    Darup, Moritz
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 2479 - 2484
  • [44] Learning Based Stochastic Data-Driven Predictive Control
    Hiremath, Sandesh Athni
    Mishra, Vikas Kumar
    Bajcinca, Naim
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 1684 - 1691
  • [45] A Data-Driven Predictive Control Structure in the Behavioral Framework
    Wei, Lai
    Yan, Yitao
    Bao, Jie
    IFAC PAPERSONLINE, 2020, 53 (02): : 159 - 164
  • [46] Automatic Tuning for Data-driven Model Predictive Control
    Edwards, William
    Tang, Gao
    Mamakoukas, Giorgos
    Murphey, Todd
    Hauser, Kris
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 7379 - 7385
  • [47] Data-driven optimal tracking control of switched linear systems
    Xu, Yichao
    Liu, Yang
    Ruan, Qihua
    Lou, Jungang
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2023, 49
  • [48] Data-driven Pattern Moving and Generalized Predictive Control
    Xu, Zhengguang
    Wu, Jinxia
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 1604 - 1609
  • [49] Frequency-Domain Data-Driven Predictive Control
    Meijer, T. J.
    Nouwens, S. A. N.
    Scheres, K. J. A.
    Dolk, V. S.
    Heemels, W. P. M. H.
    IFAC PAPERSONLINE, 2024, 58 (18): : 86 - 91
  • [50] On Direct vs Indirect Data-Driven Predictive Control
    Krishnan, Vishaal
    Pasqualetti, Fabio
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 736 - 741