Integral Representations of Ratios of the Gauss Hypergeometric Functions with Parameters Shifted by Integers

被引:1
|
作者
Dyachenko, Alexander [1 ]
Karp, Dmitrii [2 ,3 ,4 ]
机构
[1] Keldysh Inst Appl Math, Moscow 125047, Russia
[2] Holon Inst Technol, Dept Math, IL-5810201 Holon, Israel
[3] Far Eastern Fed Univ, Sch Econ & Management, Vladivostok 690922, Russia
[4] Far Eastern Fed Univ, Far Eastern Ctr Res & Educ Math, Vladivostok 690922, Russia
关键词
gauss hypergeometric function; gauss continued fraction; integral representation; JACOBI-POLYNOMIALS; 3-TERM RELATIONS; STIELTJES; ZEROS;
D O I
10.3390/math10203903
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given real parameters a,b,c and integer shifts n1,n2,m, we consider the ratio R(z)=2F1(a+n1,b+n2;c+m;z)/2F1(a,b;c;z) of the Gauss hypergeometric functions. We find a formula for ImR(x +/- i0) with x>1 in terms of real hypergeometric polynomial P, beta density and the absolute value of the Gauss hypergeometric function. This allows us to construct explicit integral representations for R when the asymptotic behaviour at unity is mild and the denominator does not vanish. The results are illustrated with a large number of examples.
引用
收藏
页数:26
相关论文
共 50 条